Hyunchae Chun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4266555/publications.pdf

Version: 2024-02-01

43 papers

2,425 citations

20 h-index 32 g-index

43 all docs 43 docs citations

43 times ranked

2070 citing authors

#	Article	IF	CITATIONS
1	A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride \$mu{m LED}\$. IEEE Photonics Technology Letters, 2014, 26, 637-640.	2.5	722
2	High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications. IEEE Photonics Technology Letters, 2016, 28, 2023-2026.	2.5	276
3	A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semiconductor Science and Technology, 2017, 32, 023001.	2.0	205
4	LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications. Journal of Lightwave Technology, 2016, 34, 3047-3052.	4.6	187
5	Visible Light Communication Using a Blue GaN \$mu \$ LED and Fluorescent Polymer Color Converter. IEEE Photonics Technology Letters, 2014, 26, 2035-2038.	2.5	109
6	High-Speed Integrated Visible Light Communication System: Device Constraints and Design Considerations. IEEE Journal on Selected Areas in Communications, 2015, 33, 1750-1757.	14.0	106
7	Wide field-of-view fluorescent antenna for visible light communications beyond the \tilde{A} ©tendue limit. Optica, 2016, 3, 702.	9.3	73
8	A Comparison of APD- and SPAD-Based Receivers for Visible Light Communications. Journal of Lightwave Technology, 2018, 36, 2435-2442.	4.6	68
9	A Wide-Area Coverage 35 Gb/s Visible Light Communications Link for Indoor Wireless Applications. Scientific Reports, 2019, 9, 4952.	3 . 3	68
10	Novel Fast Color-Converter for Visible Light Communication Using a Blend of Conjugated Polymers. ACS Photonics, 2015, 2, 194-199.	6.6	57
11	Fluorescent Redâ€Emitting BODIPY Oligofluorene Starâ€Shaped Molecules as a Color Converter Material for Visible Light Communications. Advanced Optical Materials, 2015, 3, 536-540.	7.3	44
12	Handheld free space quantum key distribution with dynamic motion compensation. Optics Express, 2017, 25, 6784.	3.4	44
13	A Multigigabit per Second Integrated Multiple-Input Multiple-Output VLC Demonstrator. Journal of Lightwave Technology, 2017, 35, 4358-4365.	4.6	40
14	A Study of Illumination and Communication using Organic Light Emitting Diodes. Journal of Lightwave Technology, 2013, 31, 3511-3517.	4.6	38
15	Visible light communication using laser diode based remote phosphor technique. , 2015, , .		30
16	Optical Antennas for Wavelength Division Multiplexing in Visible Light Communications beyond the Étendue Limit. Advanced Optical Materials, 2020, 8, 1901139.	7.3	29
17	A 200 Mb/s VLC demonstration with a SPAD based receiver. , 2015, , .		28
18	The Future Prospects for SiPM-Based Receivers for Visible Light Communications. Journal of Lightwave Technology, 2019, 37, 4367-4374.	4.6	28

#	Article	IF	CITATIONS
19	Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System. IEEE Photonics Technology Letters, 2019, 31, 821-824.	2.5	28
20	Transmitter and receiver technologies for optical wireless. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190182.	3.4	26
21	Visible light communication using OLEDs: Illumination and channel modeling. , 2012, , .		24
22	Design, Fabrication, and Application of GaN-Based Micro-LED Arrays With Individual Addressing by N-Electrodes. IEEE Photonics Journal, 2017, 9, 1-11.	2.0	22
23	MIMO Visible Light Communications Using a Wide Field-of-View Fluorescent Concentrator. IEEE Photonics Technology Letters, 2017, 29, 306-309.	2.5	21
24	Impact of multipath reflections on secrecy in VLC systems with randomly located eavesdroppers. , 2018, , .		19
25	Demonstration of 2.3 Gb/s RGB white-light VLC using polymer based colour-converters and GaN micro-LEDs. , 2015 , , .		17
26	Imaging-MIMO visible light communication system using & amp; #x03BC; LEDs and integrated receiver. , 2014, , .		14
27	Effectiveness of blue-filtering in WLED based indoor Visible light communication. , 2014, , .		14
28	Experimental proof-of-concept of optical spatial modulation OFDM using micro LEDs., 2015,,.		13
29	Flexible Glass Hybridized Colloidal Quantum Dots for Gb/s Visible Light Communications. IEEE Photonics Journal, 2018, 10, 1-11.	2.0	12
30	A High Speed Retro-Reflective Free Space Optics Links With UAV. Journal of Lightwave Technology, 2021, 39, 5699-5705.	4.6	10
31	Optimum Device and Modulation Scheme Selection for Optical Wireless Communications. Journal of Lightwave Technology, 2021, 39, 2281-2287.	4.6	8
32	A spectrally efficient equalization technique for optical sources with direct modulation. Optics Letters, 2018, 43, 2708.	3.3	8
33	High CRI RGB Laser Lighting With 11-Gb/s WDM Link Using Off-the-Shelf Phosphor Plate. IEEE Photonics Technology Letters, 2022, 34, 97-100.	2.5	7
34	Bi-LSTM-Augmented Deep Neural Network for Multi-Gbps VCSEL-Based Visible Light Communication Link. Sensors, 2022, 22, 4145.	3.8	6
35	Ultra-wide coverage VLC system with alignment-free receiver. , 2018, , .		5
36	Utilization of LED Grow Lights for Optical Wireless Communication-Based RF-Free Smart-Farming System. Sensors, 2021, 21, 6833.	3.8	5

#	Article	IF	CITATIONS
37	Reflection based coupling efficiency enhancement in a fluorescent planar concentrator for an optical wireless receiver. Optics Express, 2021, 29, 28901.	3.4	3
38	RCS-OFDM enabling full brightness control with power-efficient visible-light communication. Optics Letters, 2022, 47, 277.	3.3	3
39	Smart License Plate in Combination with Fluorescent Concentrator for Vehicular Visible Light Communication System. Sensors, 2022, 22, 2485.	3.8	3
40	Efficient pulse amplitude modulation for SPAD-based receivers. , 2018, , .		2
41	Fluorescent reflector and image-processing-based D2D beam-steering system for V2V applications. Applied Optics, 2021, 60, 7152.	1.8	2
42	Investigation of frequency dependent nonlinearity on pulse amplitude modulation in bandlimited visible light communications. Optics Communications, 2020, 472, 126040.	2.1	1
43	Whiteâ€light visible light communications based on multiple photoluminescence of fluorescent acrylic sheets. IET Optoelectronics, 0, , .	3.3	0