
Isabelle André

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4265832/publications.pdf Version: 2024-02-01

ISARELLE ANDRÃO

#	Article	IF	CITATIONS
1	A combination of cyclophosphamide and interleukin-2 allows CD4+ T cells converted to Tregs to control <i>scurfy</i> syndrome. Blood, 2021, 137, 2326-2336.	1.4	9
2	Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nature Communications, 2021, 12, 6446.	12.8	35
3	Alternative UNC13D Promoter Encodes a Functional Munc13-4 Isoform Predominantly Expressed in Lymphocytes and Platelets. Frontiers in Immunology, 2020, 11, 1154.	4.8	2
4	Donor-targeted serotherapy as a rescue therapy for steroid-resistant acute GVHD after HLA-mismatched kidney transplantation. American Journal of Transplantation, 2020, 20, 2243-2253.	4.7	11
5	Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. Blood, 2020, 135, 1219-1231.	1.4	50
6	Generation of adult human T-cell progenitors for immunotherapeutic applications. Journal of Allergy and Clinical Immunology, 2018, 141, 1491-1494.e4.	2.9	15
7	Gene Therapy with Hematopoietic Stem Cells: The Diseased Bone Marrow's Point of View. Stem Cells and Development, 2017, 26, 71-76.	2.1	25
8	B cells differentiate in human thymus and express AIRE. Journal of Allergy and Clinical Immunology, 2017, 139, 1049-1052.e12.	2.9	32
9	Gene transfer into hematopoietic stem cells reduces HLH manifestations in a murine model of Munc13-4 deficiency. Blood Advances, 2017, 1, 2781-2789.	5.2	18
10	Gene-corrected human Munc13-4–deficient CD8+ T cells can efficiently restrict EBV-driven lymphoproliferation in immunodeficient mice. Blood, 2016, 128, 2859-2862.	1.4	26
11	Interleukin-15-Dependent T-Cell-like Innate Intraepithelial Lymphocytes Develop in the Intestine and Transform into Lymphomas in Celiac Disease. Immunity, 2016, 45, 610-625.	14.3	131
12	Alterations of circulating lymphoid committed progenitor cellular metabolism after allogeneic stem cell transplantation in humans. Experimental Hematology, 2016, 44, 811-816.e3.	0.4	9
13	X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. Journal of Allergy and Clinical Immunology, 2016, 138, 1681-1689.e8.	2.9	60
14	Gene Therapy for X-Linked Severe Combined Immunodeficiency: Where Do We Stand?. Human Gene Therapy, 2016, 27, 108-116.	2.7	92
15	An inÂvivo genetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation. Journal of Allergy and Clinical Immunology, 2015, 136, 1619-1626.e5.	2.9	63
16	Fetal consequences of maternal antiretroviral nucleoside reverse transcriptase inhibitor use in human and nonhuman primate pregnancy. Current Opinion in Pediatrics, 2015, 27, 233-239.	2.0	29
17	Comparing genotoxic signatures in cord blood cells from neonates exposed in utero to zidovudine or tenofovir. Aids, 2015, 29, 1319-1324.	2.2	15
18	CXCR4-Related Increase of Circulating Human Lymphoid Progenitors after Allogeneic Hematopoietic Stem Cell Transplantation. PLoS ONE, 2014, 9, e91492.	2.5	5

Isabelle André

#	Article	IF	CITATIONS
19	RUNX1-dependent RAG1 deposition instigates human TCR-δlocus rearrangement. Journal of Experimental Medicine, 2014, 211, 1821-1832.	8.5	19
20	The BLNK adaptor protein has a nonredundant role in human B-cell differentiation. Journal of Allergy and Clinical Immunology, 2014, 134, 145-154.e3.	2.9	35
21	Haematopoietic stem cell transplantation for <scp>SCID</scp> patients: where do we stand?. British Journal of Haematology, 2013, 160, 146-152.	2.5	41
22	Genotoxic Signature in Cord Blood Cells of Newborns Exposed In Utero to a Zidovudine-Based Antiretroviral Combination. Journal of Infectious Diseases, 2013, 208, 235-243.	4.0	34
23	MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood, 2012, 119, 3458-3468.	1.4	244
24	Amniotic Fluid Stem Cells Restore the Muscle Cell Niche in a <i>HSAâ€Cre</i> , <i> Smn ^{F7/F7}</i> Mouse Model. Stem Cells, 2012, 30, 1675-1684.	3.2	61
25	Human Tâ€Lymphoid Progenitors Generated in a Feederâ€Cellâ€Free Deltaâ€Likeâ€4 Culture System Promote Tâ Reconstitution in NOD/SCID/γc ^{â^'/â^'} Mice. Stem Cells, 2012, 30, 1771-1780.	ۂell 3.2	68
26	Cytokines and culture medium have a major impact on human in vitro T-cell differentiation. Blood Cells, Molecules, and Diseases, 2011, 47, 72-78.	1.4	29
27	Abnormalities of the Hematopoietic Stem Cell Compartment in Children After in Utero Exposure to AZT. Blood, 2011, 118, 1123-1123.	1.4	0
28	Advances in adoptive immunotherapy to accelerate T-cellular immune reconstitution after HLA-incompatible hematopoietic stem cell transplantation. Immunotherapy, 2010, 2, 481-496.	2.0	7
29	Mesenchymal Stromal Cells Can Be Derived From Bone Marrow CD133 ⁺ Cells: Implications for Therapy. Stem Cells and Development, 2009, 18, 497-510.	2.1	33
30	Immune reconstitution after haematopoietic stem cell transplantation: obstacles and anticipated progress. Current Opinion in Immunology, 2009, 21, 544-548.	5.5	34
31	Shortening the immunodeficient period after hematopoietic stem cell transplantation. Immunologic Research, 2009, 44, 54-60.	2.9	5
32	Human and murine amniotic fluid c-Kit+Linâ^' cells display hematopoietic activity. Blood, 2009, 113, 3953-3960.	1.4	140
33	HIV-1 Nef protein expression in human CD34+ progenitors impairs the differentiation of an early T/NK cell precursor. Virology, 2008, 377, 207-215.	2.4	11
34	Restoration of Human B-cell Differentiation Into NOD-SCID Mice Engrafted With Gene-corrected CD34+ Cells Isolated From Artemis or RAG1-deficient Patients. Molecular Therapy, 2008, 16, 396-403.	8.2	39
35	Lymphoid-affiliated genes are associated with active histone modifications in human hematopoietic stem cells. Blood, 2008, 112, 2722-2729.	1.4	34
36	A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. Journal of Experimental Medicine, 2007, 204, 3085-3093.	8.5	101

Isabelle André

#	Article	IF	CITATIONS
37	Dynamics of Thymus-Colonizing Cells during Human Development. Immunity, 2006, 24, 217-230.	14.3	107
38	HOX11L2/TLX3 is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5;14)(q35;q32). Blood, 2006, 108, 4198-4201.	1.4	50
39	Bone Marrow Transplantation Attenuates the Myopathic Phenotype of a Muscular Mouse Model of Spinal Muscular Atrophy. Stem Cells, 2006, 24, 2723-2732.	3.2	24
40	Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood, 2005, 105, 2699-2706.	1.4	75
41	Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunological Reviews, 2005, 203, 98-109.	6.0	212
42	IL-7 effect on immunological reconstitution after HSCT depends on MHC incompatibility. British Journal of Haematology, 2004, 126, 844-851.	2.5	18
43	Gene transfer for activation of cmv specific t cells. Human Immunology, 2004, 65, 565-570.	2.4	5
44	Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet, The, 2002, 360, 130-137.	13.7	212
45	Improving immune reconstitution while preventing graft-versus-host disease in allogeneic stem cell transplantation. Seminars in Hematology, 2002, 39, 32-40.	3.4	18
46	Medical perspectives of adults and embryonic stem cells. Comptes Rendus - Biologies, 2002, 325, 1053-1058.	0.2	1
47	Damage control, rather than unresponsiveness, effected by protective DX5+ T cells in autoimmune diabetes. Nature Immunology, 2001, 2, 1117-1125.	14.5	149
48	Different modes of pathogenesis in T-cell-dependent autoimmunity: clues from two TCR transgenic systems. Immunological Reviews, 1999, 169, 139-146.	6.0	45
49	Cellular and molecular changes accompanying the progression from insulitis to diabetes. European Journal of Immunology, 1999, 29, 245-255.	2.9	2
50	Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic Acids Research, 1992, 20, 1087-1091.	14.5	148