
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4265586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research, 2019, 47, D442-D450.	6.5	6,449
2	2016 update of the PRIDE database and its related tools. Nucleic Acids Research, 2016, 44, D447-D456.	6.5	3,451
3	The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Research, 2022, 50, D543-D552.	6.5	2,766
4	ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnology, 2014, 32, 223-226.	9.4	2,505
5	The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Research, 2012, 41, D1063-D1069.	6.5	1,858
6	The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Research, 2017, 45, D1100-D1106.	6.5	860
7	Shorthand notation for lipid structures derived from mass spectrometry. Journal of Lipid Research, 2013, 54, 1523-1530.	2.0	689
8	The ProteomeXchange consortium in 2020: enabling â€~big data' approaches in proteomics. Nucleic Acids Research, 2020, 48, D1145-D1152.	6.5	491
9	Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Research, 2018, 46, D246-D251.	6.5	365
10	Expression Atlas update: from tissues to single cells. Nucleic Acids Research, 2020, 48, D77-D83.	6.5	363
11	A HUPO test sample study reveals common problems in mass spectrometry–based proteomics. Nature Methods, 2009, 6, 423-430.	9.0	316
12	The functional landscape of the human phosphoproteome. Nature Biotechnology, 2020, 38, 365-373.	9.4	273
13	A guide to the Proteomics Identifications Database proteomics data repository. Proteomics, 2009, 9, 4276-4283.	1.3	220
14	The Proteomics Identifications database: 2010 update. Nucleic Acids Research, 2010, 38, D736-D742.	6.5	220
15	Making sense of big data in health research: Towards an EU action plan. Genome Medicine, 2016, 8, 71.	3.6	190
16	Making proteomics data accessible and reusable: Current state of proteomics databases and repositories. Proteomics, 2015, 15, 930-950.	1.3	181
17	The mzIdentML Data Standard for Mass Spectrometry-Based Proteomics Results. Molecular and Cellular Proteomics, 2012, 11, M111.014381-1-M111.014381-10.	2.5	175
18	PRIDE Converter: making proteomics data-sharing easy. Nature Biotechnology, 2009, 27, 598-599.	9.4	159

2

#	Article	IF	CITATIONS
19	Discovering and linking public omics data sets using the Omics Discovery Index. Nature Biotechnology, 2017, 35, 406-409.	9.4	159
20	A high-stringency blueprint of the human proteome. Nature Communications, 2020, 11, 5301.	5.8	152
21	Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets. Nature Methods, 2016, 13, 651-656.	9.0	147
22	PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets. Molecular and Cellular Proteomics, 2016, 15, 305-317.	2.5	140
23	The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience. Molecular and Cellular Proteomics, 2014, 13, 2765-2775.	2.5	130
24	The SysteMHC Atlas project. Nucleic Acids Research, 2018, 46, D1237-D1247.	6.5	119
25	PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nature Biotechnology, 2012, 30, 135-137.	9.4	109
26	The Ontology Lookup Service: bigger and better. Nucleic Acids Research, 2010, 38, W155-W160.	6.5	108
27	The PRoteomics IDEntification (PRIDE) Converter 2 Framework: An Improved Suite of Tools to Facilitate Data Submission to the PRIDE Database and the ProteomeXchange Consortium. Molecular and Cellular Proteomics, 2012, 11, 1682-1689.	2.5	105
28	First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study. Analytical Chemistry, 2019, 91, 6953-6961.	3.2	100
29	Ten Simple Rules for Taking Advantage of Git and GitHub. PLoS Computational Biology, 2016, 12, e1004947.	1.5	96
30	A Golden Age for Working with Public Proteomics Data. Trends in Biochemical Sciences, 2017, 42, 333-341.	3.7	92
31	Proteomics Standards Initiative: Fifteen Years of Progress and Future Work. Journal of Proteome Research, 2017, 16, 4288-4298.	1.8	87
32	Quantifying the impact of public omics data. Nature Communications, 2019, 10, 3512.	5.8	79
33	Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Research, 2022, 50, D129-D140.	6.5	78
34	Cloning and characterization of the erg1 gene of Trichoderma harzianum: Effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genetics and Biology, 2006, 43, 164-178.	0.9	77
35	The HUPO proteomics standards initiative- mass spectrometry controlled vocabulary. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat009-bat009.	1.4	76
36	Genetic diversity shown in Trichoderma biocontrol isolates. Mycological Research, 2004, 108, 897-906.	2.5	74

#	Article	IF	CITATIONS
37	Exploring the potential of public proteomics data. Proteomics, 2016, 16, 214-225.	1.3	72
38	Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Current Genetics, 2007, 51, 331-342.	0.8	71
39	LipidHome: A Database of Theoretical Lipids Optimized for High Throughput Mass Spectrometry Lipidomics. PLoS ONE, 2013, 8, e61951.	1.1	69
40	Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 63-76.	1.1	67
41	Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters. Antimicrobial Agents and Chemotherapy, 2015, 59, 6101-6112.	1.4	67
42	Separation and Identification of Volatile Components in the Fermentation Broth of Trichoderma atroviride by Solid-Phase Extraction and Gas ChromatographyMass Spectrometry. Journal of Chromatographic Science, 2000, 38, 421-424.	0.7	66
43	The mzQuantML Data Standard for Mass Spectrometry–based Quantitative Studies in Proteomics. Molecular and Cellular Proteomics, 2013, 12, 2332-2340.	2.5	66
44	The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Molecular and Cellular Proteomics, 2020, 19, 31-49.	2.5	65
45	PRIDE Cluster: building a consensus of proteomics data. Nature Methods, 2013, 10, 95-96.	9.0	62
46	Proteomics data repositories: Providing a safe haven for your data and acting as a springboard for further research. Journal of Proteomics, 2010, 73, 2136-2146.	1.2	61
47	Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413. BMC Genomics, 2006, 7, 193.	1.2	60
48	Partial silencing of a hydroxy-methylglutaryl-CoA reductase-encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and lower antifungal activity. Fungal Genetics and Biology, 2007, 44, 269-283.	0.9	60
49	Accurate and fast feature selection workflow for high-dimensional omics data. PLoS ONE, 2017, 12, e0189875.	1.1	60
50	Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment. Cell Metabolism, 2017, 26, 256-266.e4.	7.2	59
51	Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiology, 2009, 9, 217.	1.3	58
52	The mzIdentML Data Standard Version 1.2, Supporting Advances in Proteome Informatics. Molecular and Cellular Proteomics, 2017, 16, 1275-1285.	2.5	55
53	A five-level classification system for proteoform identifications. Nature Methods, 2019, 16, 939-940.	9.0	55
54	Organelle proteomics experimental designs and analysis. Proteomics, 2010, 10, 3957-3969.	1.3	54

#	Article	IF	CITATIONS
55	How to submit MS proteomics data to ProteomeXchange via the PRIDE database. Proteomics, 2014, 14, 2233-2241.	1.3	54
56	Development of data representation standards by the human proteome organization proteomics standards initiative. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 495-506.	2.2	54
57	Quest for Missing Proteins: Update 2015 on Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2015, 14, 3415-3431.	1.8	53
58	Proteomic Temporal Profile of Human Brain Endothelium After Oxidative Stress. Stroke, 2011, 42, 37-43.	1.0	51
59	Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species. Current Genetics, 2004, 46, 277-286.	0.8	49
60	Using the PRIDE Database and ProteomeXchange for Submitting and Accessing Public Proteomics Datasets. Current Protocols in Bioinformatics, 2017, 59, 13.31.1-13.31.12.	25.8	48
61	Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycological Research, 2005, 109, 1397-1406.	2.5	47
62	Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research, 2018, 17, 4051-4060.	1.8	47
63	The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences. Bioinformatics, 2020, 36, 2636-2642.	1.8	47
64	Universal Spectrum Identifier for mass spectra. Nature Methods, 2021, 18, 768-770.	9.0	47
65	The PSI formal document process and its implementation on the PSI website. Proteomics, 2007, 7, 2355-2357.	1.3	45
66	A proteomics sample metadata representation for multiomics integration and big data analysis. Nature Communications, 2021, 12, 5854.	5.8	45
67	Open source libraries and frameworks for biological data visualisation: A guide for developers. Proteomics, 2015, 15, 1356-1374.	1.3	43
68	mzTab-M: A Data Standard for Sharing Quantitative Results in Mass Spectrometry Metabolomics. Analytical Chemistry, 2019, 91, 3302-3310.	3.2	43
69	A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation. Journal of Microbiology, 2006, 44, 383-95.	1.3	43
70	qcML: An Exchange Format for Quality Control Metrics from Mass Spectrometry Experiments. Molecular and Cellular Proteomics, 2014, 13, 1905-1913.	2.5	42
71	Detection of putative peptide synthetase genes inTrichodermaspecies: Application of this method to the cloning of a gene fromT. harzianumCECT 2413. FEMS Microbiology Letters, 2005, 244, 139-148.	0.7	41
72	ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genetics and Biology, 2006, 43, 234-246.	0.9	41

#	Article	IF	CITATIONS
73	Analyzing Large-Scale Proteomics Projects with Latent Semantic Indexing. Journal of Proteome Research, 2008, 7, 182-191.	1.8	41
74	Generation, annotation, and analysis of ESTs from four different Trichoderma strains grown under conditions related to biocontrol. Applied Microbiology and Biotechnology, 2007, 75, 853-862.	1.7	39
75	An integrated landscape of protein expression in human cancer. Scientific Data, 2021, 8, 115.	2.4	38
76	Direct Evidence of the Presence of Cross-Linked Aβ Dimers in the Brains of Alzheimer's Disease Patients. Analytical Chemistry, 2018, 90, 4552-4560.	3.2	37
77	Isoelectric point optimization using peptide descriptors and support vector machines. Journal of Proteomics, 2012, 75, 2269-2274.	1.2	36
78	Controlled vocabularies and ontologies in proteomics: Overview, principles and practice. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 98-107.	1.1	36
79	PRIDE: Quality control in a proteomics data repository. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas004-bas004.	1.4	35
80	ProForma: A Standard Proteoform Notation. Journal of Proteome Research, 2018, 17, 1321-1325.	1.8	35
81	Microbial Contamination of Carcasses and Equipment from an Iberian Pig Slaughterhouse. Journal of Food Protection, 2000, 63, 1670-1675.	0.8	34
82	Tools (Viewer, Library and Validator) that Facilitate Use of the Peptide and Protein Identification Standard Format, Termed mzIdentML. Molecular and Cellular Proteomics, 2013, 12, 3026-3035.	2.5	32
83	A public repository for mass spectrometry imaging data. Analytical and Bioanalytical Chemistry, 2015, 407, 2027-2033.	1.9	31
84	jmzReader: A Java parser library to process and visualize multiple text and XMLâ€based mass spectrometry data formats. Proteomics, 2012, 12, 795-798.	1.3	30
85	ms-data-core-api: an open-source, metadata-oriented library for computational proteomics. Bioinformatics, 2015, 31, 2903-2905.	1.8	30
86	jmz <scp>I</scp> dent <scp>ML API</scp> : A <scp>J</scp> ava interface to the mz <scp>I</scp> dent <scp>ML</scp> standard for peptide and protein identification data. Proteomics, 2012, 12, 790-794.	1.3	29
87	Improvements in the protein identifier cross-reference service. Nucleic Acids Research, 2012, 40, W276-W280.	6.5	27
88	Consequences of the discontinuation of the International Protein Index (IPI) database and its substitution by the UniProtKB "complete proteome―sets. Proteomics, 2011, 11, 4434-4438.	1.3	25
89	Analysis of the Protein Domain and Domain Architecture Content in Fungi and Its Application in the Search of New Antifungal Targets. PLoS Computational Biology, 2014, 10, e1003733.	1.5	25
90	Data Management of Sensitive Human Proteomics Data: Current Practices, Recommendations, and Perspectives for the Future. Molecular and Cellular Proteomics, 2021, 20, 100071.	2.5	25

#	Article	IF	CITATIONS
91	A standardized framing for reporting protein identifications in mzldentML 1.2. Proteomics, 2014, 14, 2389-2399.	1.3	23
92	Minimal Information About an Immunoâ€Peptidomics Experiment (MIAIPE). Proteomics, 2018, 18, e1800110.	1.3	23
93	Proteomics Standards Initiative Extended FASTA Format. Journal of Proteome Research, 2019, 18, 2686-2692.	1.8	22
94	The proBAM and proBed standard formats: enabling a seamless integration of genomics and proteomics data. Genome Biology, 2018, 19, 12.	3.8	21
95	Published and Perished? The Influence of the Searched Protein Database on the Long-Term Storage of Proteomics Data. Molecular and Cellular Proteomics, 2011, 10, M111.008490.	2.5	20
96	Identifying novel biomarkers through data mining—A realistic scenario?. Proteomics - Clinical Applications, 2015, 9, 437-443.	0.8	20
97	BioContainers Registry: Searching Bioinformatics and Proteomics Tools, Packages, and Containers. Journal of Proteome Research, 2021, 20, 2056-2061.	1.8	19
98	Detection of peptaibols and partial cloning of a putative peptaibol synthetase gene fromT. harzianum CECT 2413. Folia Microbiologica, 2006, 51, 114-120.	1.1	18
99	Analysis of the experimental detection of central nervous systemâ€related genes in human brain and cerebrospinal fluid datasets. Proteomics, 2008, 8, 1138-1148.	1.3	18
100	Introducing the PRIDE Archive RESTful web services. Nucleic Acids Research, 2015, 43, W599-W604.	6.5	18
101	Pride-asap: Automatic fragment ion annotation of identified PRIDE spectra. Journal of Proteomics, 2013, 95, 89-92.	1.2	17
102	OLS Client and OLS Dialog: Open Source Tools to Annotate Public Omics Datasets. Proteomics, 2017, 17, 1700244.	1.3	17
103	The growing need for controlled data access models in clinical proteomics and metabolomics. Nature Communications, 2021, 12, 5787.	5.8	17
104	Ten Years of Standardizing Proteomic Data: A Report on the HUPOâ€PSI Spring Workshop. Proteomics, 2012, 12, 2767-2772.	1.3	16
105	jmzTab: A Java interface to the mzTab data standard. Proteomics, 2014, 14, 1328-1332.	1.3	16
106	Colour pigments of Trichoderma harzianum. Journal of Chromatography A, 2000, 896, 61-68.	1.8	15
107	Detection of Missing Proteins Using the PRIDE Database as a Source of Mass Spectrometry Evidence. Journal of Proteome Research, 2016, 15, 4101-4115.	1.8	15
108	Future Prospects of Spectral Clustering Approaches in Proteomics. Proteomics, 2018, 18, e1700454.	1.3	15

#	Article	IF	CITATIONS
109	Proteomics Standards Initiative's ProForma 2.0: Unifying the Encoding of Proteoforms and Peptidoforms. Journal of Proteome Research, 2022, 21, 1189-1195.	1.8	14
110	Method for Independent Estimation of the False Localization Rate for Phosphoproteomics. Journal of Proteome Research, 2022, 21, 1603-1615.	1.8	14
111	PRIDE: Data Submission and Analysis. Current Protocols in Protein Science, 2010, 60, Unit 25.4.	2.8	13
112	Embedding standards in metabolomics: the Metabolomics Society data standards task group. Metabolomics, 2015, 11, 782-783.	1.4	13
113	Analysis of the tryptic search space in UniProt databases. Proteomics, 2015, 15, 48-57.	1.3	13
114	Enhanced Missing Proteins Detection in NCI60 Cell Lines Using an Integrative Search Engine Approach. Journal of Proteome Research, 2017, 16, 4374-4390.	1.8	13
115	Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins. Journal of Proteome Research, 2019, 18, 1477-1485.	1.8	13
116	PRIDE and "Database on Demand―as Valuable Tools for Computational Proteomics. Methods in Molecular Biology, 2011, 696, 93-105.	0.4	13
117	A community proposal to integrate proteomics activities in ELIXIR. F1000Research, 2017, 6, 875.	0.8	13
118	Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas. Scientific Data, 2022, 9, .	2.4	13
119	Charting online OMICS resources: A navigational chart for clinical researchers. Proteomics - Clinical Applications, 2009, 3, 18-29.	0.8	12
120	From Peptidome to PRIDE : P ublic proteomics data migration at a large scale. Proteomics, 2013, 13, 1692-1695.	1.3	12
121	Quality Control in Proteomics. Proteomics, 2011, 11, 1015-1016.	1.3	11
122	Proteomics Data Exchange and Storage: The Need for Common Standards and Public Repositories. Methods in Molecular Biology, 2013, 1007, 317-333.	0.4	11
123	Integrated view and comparative analysis of baseline protein expression in mouse and rat tissues. PLoS Computational Biology, 2022, 18, e1010174.	1.5	11
124	Response to "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra― Journal of Proteome Research, 2018, 17, 1993-1996.	1.8	9
125	Using Deep Learning to Extrapolate Protein Expression Measurements. Proteomics, 2020, 20, e2000009.	1.3	9
126	Critical amino acid residues in proteins: a BioMart integration of Reactome protein annotations with PRIDE mass spectrometry data and COSMIC somatic mutations. Database: the Journal of Biological Databases and Curation, 2011, 2011, bar047.	1.4	8

#	Article	IF	CITATIONS
127	HI-Bone: A Scoring System for Identifying Phenylisothiocyanate-Derivatized Peptides Based on Precursor Mass and High Intensity Fragment Ions. Analytical Chemistry, 2013, 85, 3515-3520.	3.2	7
128	Protamine Characterization by Top-Down Proteomics: Boosting Proteoform Identification with DBSCAN. Proteomes, 2021, 9, 21.	1.7	7
129	Synthetic human proteomes for accelerating protein research. Nature Methods, 2017, 14, 240-242.	9.0	6
130	Quantitative Proteomics Data in theÂPublic Domain: Challenges and Opportunities. Methods in Molecular Biology, 2019, 1977, 217-235.	0.4	5
131	A Survey of Molecular Descriptors Used in Mass Spectrometry Based Proteomics. Current Topics in Medicinal Chemistry, 2014, 14, 388-397.	1.0	5
132	Proteomics Data Visualisation. Proteomics, 2015, 15, 1339-1340.	1.3	3
133	Review of Issues and Solutions to Data Analysis Reproducibility and Data Quality in Clinical Proteomics. Methods in Molecular Biology, 2020, 2051, 345-371.	0.4	3
134	Submitting Proteomics Data to PRIDE Using PRIDE Converter. Methods in Molecular Biology, 2011, 694, 237-253.	0.4	2
135	Proteomic tools for the quantitative analysis of artificial peptide libraries: detection and characterization of targetâ \in amplified PDâ \in 1 inhibitors ChemBioChem, 2022, , .	1.3	2
136	EST Analysis Pipeline: Use of Distributed Computing Resources. Methods in Molecular Biology, 2011, 722, 103-120.	0.4	0
137	Ontology Lookup Service for Controlled Vocabularies and Data Annotation. , 2013, , 1562-1565.		0