Michael S Y Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4265410/publications.pdf

Version: 2024-02-01

38742 64796 7,386 135 50 79 citations h-index g-index papers 137 137 137 6191 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Calibration Choice, Rate Smoothing, and the Pattern of Tetrapod Diversification According to the Long Nuclear Gene RAG-1. Systematic Biology, 2007, 56, 543-563.	5.6	277
2	The Influence of Rate Heterogeneity among Sites on the Time Dependence of Molecular Rates. Molecular Biology and Evolution, 2012, 29, 3345-3358.	8.9	275
3	Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 1998, 65, 369-453.	1.6	259
4	Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science, 2014, 344, 898-900.	12.6	247
5	Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science, 2014, 345, 562-566.	12.6	217
6	Historical Burden In Systematics And The Interrelationships Of â€~Parareptiles'. Biological Reviews, 1995, 70, 459-547.	10.4	200
7	Molecular Phylogeny, Biogeography, and Habitat Preference Evolution of Marsupials. Molecular Biology and Evolution, 2014, 31, 2322-2330.	8.9	189
8	A snake with legs from the marine Cretaceous of the Middle East. Nature, 1997, 386, 705-709.	27.8	170
9	Snake phylogeny based on osteology, soft anatomy and ecology. Biological Reviews, 2002, 77, 333-401.	10.4	158
10	The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 53-91.	4.0	153
11	Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 2011, 480, 237-240.	27.8	152
12	Morphological Phylogenetics in the Genomic Age. Current Biology, 2015, 25, R922-R929.	3.9	151
13	Rates of Phenotypic and Genomic Evolution during the Cambrian Explosion. Current Biology, 2013, 23, 1889-1895.	3.9	140
14	Species Names in Phylogenetic Nomenclature. Systematic Biology, 1999, 48, 790-807.	5.6	130
15	Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17089-17094.	7.1	126
16	Pareiasaur phylogeny and the origin of turtles. Zoological Journal of the Linnean Society, 1997, 120, 197-280.	2.3	123
17	The Pleistocene serpent Wonambi and the early evolution of snakes. Nature, 2000, 403, 416-420.	27.8	116
18	Uninformative Characters and Apparent Conflict Between Molecules and Morphology. Molecular Biology and Evolution, 2001, 18, 676-680.	8.9	115

#	Article	IF	CITATIONS
19	Morphological Clocks in Paleontology, and a Mid-Cretaceous Origin of Crown Aves. Systematic Biology, 2014, 63, 442-449.	5.6	109
20	ADRIOSAURUSAND THE AFFINITIES OF MOSASAURS, DOLICHOSAURS, AND SNAKES. Journal of Paleontology, 2000, 74, 915-937.	0.8	106
21	Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Molecular Phylogenetics and Evolution, 2013, 66, 575-591.	2.7	105
22	Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141278.	2.6	103
23	Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biological Journal of the Linnean Society, 0, 93, 343-358.	1.6	98
24	Diversification rates and phenotypic evolution in venomous snakes (Elapidae). Royal Society Open Science, 2016, 3, 150277.	2.4	92
25	Trilobite evolutionary rates constrain the duration of the Cambrian explosion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4394-4399.	7.1	90
26	Cryptic diversity in vertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (<i>Diplodactylus</i> , Gekkota). Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2001-2007.	2.6	89
27	The affinities of Homo floresiensis based on phylogenetic analyses ofÂcranial, dental, and postcranial characters. Journal of Human Evolution, 2017, 107, 107-133.	2.6	89
28	Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181071.	2.6	88
29	Correlated progression and the origin of turtles. Nature, 1996, 379, 812-815.	27. 8	87
30	Ancestral State Reconstruction, Rate Heterogeneity, and the Evolution of Reptile Viviparity. Systematic Biology, 2015, 64, 532-544.	5.6	87
31	Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biology Letters, 2007, 3, 275-279.	2.3	85
32	The molecularisation of taxonomy. Invertebrate Systematics, 2004, 18, 1.	1.3	83
33	The origin of snake feeding. Nature, 1999, 400, 655-659.	27.8	82
34	A primitive protostegid from Australia and early sea turtle evolution. Biology Letters, 2006, 2, 116-119.	2.3	76
35	Rapid and repeated limb loss in a clade of scincid lizards. BMC Evolutionary Biology, 2008, 8, 310.	3.2	75
36	Phylogeny of snakes (Serpentes): Combining morphological and molecular data in likelihood, Bayesian and parsimony analyses. Systematics and Biodiversity, 2007, 5, 371-389.	1.2	73

#	Article	IF	CITATIONS
37	Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia. Nature, 2011, 474, 631-634.	27.8	73
38	Reptile relationships turn turtleâf>. Nature, 1997, 389, 245-245.	27.8	69
39	Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates. Systematic Biology, 2017, 66, syw107.	5.6	68
40	The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves,) Tj ETQq0 0 0 r	gBT /Over 2.4	lock 10 Tf 50
41	REPTILIAN VIVIPARITY AND DOLLO'S LAW. Evolution; International Journal of Organic Evolution, 1998, 52, 1441-1450.	2.3	64
42	The bivalved arthropods ⟨i⟩Isoxys⟨ i⟩ and ⟨i>Tuzoia⟨ i⟩ with softâ€part preservation from the Lower Cambrian Emu Bay Shale LagerstÃtte (Kangaroo Island, Australia). Palaeontology, 2009, 52, 1221-1241.	2,2	63
43	Likelihood reinstates <i>Archaeopteryx</i> as a primitive bird. Biology Letters, 2012, 8, 299-303.	2.3	63
44	Phylogeny of Australasian venomous snakes (Colubroidea, Elapidae, Hydrophiinae) based on phenotypic and molecular evidence. Zoologica Scripta, 2004, 33, 335-366.	1.7	62
45	AFFINITIES OF MIOCENE WATERFOWL (ANATIDAE: MANUHERIKIA, DUNSTANETTA AND MIOTADORNA) FROM THE ST BATHANS FAUNA, NEW ZEALAND. Palaeontology, 2008, 51, 677-708.	2.2	62
46	Molecular evidence for a rapid late-Miocene radiation of Australasian venomous snakes (Elapidae,) Tj ETQq0 0 0	rgBT/Ove 2.7	rlock 10 Tf 50
47	Multiple morphological clocks and total-evidence tip-dating in mammals. Biology Letters, 2016, 12, 20160033.	2.3	58
48	THE RELATIONSHIP BETWEEN EVOLUTIONARY THEORY AND PHYLOGENETIC ANALYSIS. Biological Reviews, 1997, 72, 471-495.	10.4	55
49	The origin of snakes (Serpentes) as seen through eye anatomy. Biological Journal of the Linnean Society, 2004, 81, 469-482.	1.6	55
50	Molecular evidence and marine snake origins. Biology Letters, 2005, 1, 227-230.	2.3	55
51	Arthropod molecular divergence times and the Cambrian origin of pentastomids. Systematics and Biodiversity, 2010, 8, 63-74.	1.2	55
52	Live birth in Cretaceous marine lizards (mosasauroids). Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2397-2401.	2.6	54
53	Molecular Claims of Gondwanan Age for Australian Agamid Lizards are Untenable. Molecular Biology and Evolution, 2004, 21, 2102-2110.	8.9	54
54	Reptilian Viviparity and Dollo's Law. Evolution; International Journal of Organic Evolution, 1998, 52, 1441.	2.3	53

#	Article	IF	CITATIONS
55	<i>Adriosaurus</i> and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology, 2000, 74, 915-937.	0.8	52
56	Miocene skinks and geckos reveal long-term conservatism of New Zealand's lizard fauna. Biology Letters, 2009, 5, 833-837.	2.3	49
57	Turtle origins: insights from phylogenetic retrofitting and molecular scaffolds. Journal of Evolutionary Biology, 2013, 26, 2729-2738.	1.7	49
58	An archaic crested plesiosaur in opal from the Lower Cretaceous high-latitude deposits of Australia. Biology Letters, 2006, 2, 615-619.	2.3	48
59	Elpistostege and the origin of the vertebrate hand. Nature, 2020, 579, 549-554.	27.8	46
60	Recent rapid speciation and ecomorph divergence in <scp>I</scp> ndoâ€ <scp>A</scp> ustralian sea snakes. Molecular Ecology, 2013, 22, 2742-2759.	3.9	44
61	The ultrastructure of the spermatozoa of bufonid and hylid frogs (Anura, Amphibia): implications for phylogeny and fertilization biology. Zoologica Scripta, 1993, 22, 309-323.	1.7	42
62	Osteology Supports a Stem-Galliform Affinity for the Giant Extinct Flightless Bird Sylviornis neocaledoniae (Sylviornithidae, Galloanseres). PLoS ONE, 2016, 11, e0150871.	2.5	42
63	New skulls and skeletons of the Cretaceous legged snake <i>Najash</i> , and the evolution of the modern snake body plan. Science Advances, 2019, 5, eaax5833.	10.3	42
64	The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes. Royal Society Open Science, 2017, 4, 170685.	2.4	39
65	A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar. Science Advances, 2018, 4, eaat5042.	10.3	39
66	Geometric morphometrics, homology and cladistics: review and recommendations. Cladistics, 2019, 35, 230-242.	3.3	37
67	Partitioned Bremer support and multiple trees. Cladistics, 2002, 18, 436-444.	3.3	36
68	<i>Tikiguania</i> and the antiquity of squamate reptiles (lizards and snakes). Biology Letters, 2012, 8, 665-669.	2.3	34
69	Point of View The phylogenetic approach to biological taxonomy: practical aspects. Zoologica Scripta, 1996, 25, 187-190.	1.7	33
70	Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by microâ€∢scp>CT scan data and threeâ€dimensional geometric morphometrics. Journal of Anatomy, 2016, 229, 723-754.	1.5	32
71	The Ultrastructure of the Spermatozoa of Three Species of Myobatrachid Frogs (Anura, Amphibia) with Phylogenetic Considerations. Acta Zoologica, 1992, 73, 213-222.	0.8	31
72	Late Pleistocene Australian Marsupial DNA Clarifies the Affinities of Extinct Megafaunal Kangaroos and Wallabies. Molecular Biology and Evolution, 2015, 32, 574-584.	8.9	29

#	Article	IF	CITATIONS
73	Mountain colonisation, miniaturisation and ecological evolution in a radiation of direct-developing New Guinea Frogs (<i>Choerophryne</i> , Microhylidae). PeerJ, 2017, 5, e3077.	2.0	27
74	The relationship between limb reduction, body elongation and geographical range in lizards (<i><scp>L</scp>erista</i> , <scp> S</scp> cincidae). Journal of Biogeography, 2013, 40, 1290-1297.	3.0	26
75	The ubiquitin system: an essential component to unlocking the secrets of malaria parasite biology. Molecular BioSystems, 2014, 10, 715-723.	2.9	26
76	The Bony Labyrinth in Diprotodontian Marsupial Mammals: Diversity in Extant and Extinct Forms and Relationships with Size and Phylogeny. Journal of Mammalian Evolution, 2013, 20, 191-198.	1.8	25
77	Comparisons between Cambrian LagerstÃtten assemblages using multivariate, parsimony and Bayesian methods. Gondwana Research, 2018, 55, 30-41.	6.0	24
78	Crossing the line: increasing body size in a trans-Wallacean lizard radiation (<i>Cyrtodactylus </i> ,) Tj ETQq0 0 (O rgBJ /Ov	erlogk 10 Tf 5
79	Heterochronic Shifts Mediate Ecomorphological Convergence in Skull Shape of Microcephalic Sea Snakes. Integrative and Comparative Biology, 2019, 59, 616-624.	2.0	23
80	On recent arguments for phylogenetic nomenclature. Taxon, 2001, 50, 175-180.	0.7	22
81	Online database could end taxonomic anarchy. Nature, 2002, 417, 787-788.	27.8	21
82	Body-form Evolution in the Scincid Lizard Clade Lerista and the Mode of Macroevolutionary Transitions. Evolutionary Biology, 2009, 36, 292-300.	1.1	21
83	Phylogeny and divergence times of Australian Sphenomorphus group skinks (Scincidae, Squamata). Molecular Phylogenetics and Evolution, 2013, 69, 906-918.	2.7	21
84	Molecular evidence that the deadliest sea snake Enhydrina schistosa (Elapidae: Hydrophiinae) consists of two convergent species. Molecular Phylogenetics and Evolution, 2013, 66, 262-269.	2.7	21
85	The Major Clades of Living Snakes. Reproductive Biology and Phylogeny Series, 2011, , 55-95.	1.1	21
86	Aquatic adaptations in the four limbs of the snake-like reptile Tetrapodophis from the Lower Cretaceous of Brazil. Cretaceous Research, 2016, 66, 194-199.	1.4	20
87	Molecular clocks. Current Biology, 2016, 26, R399-R402.	3.9	19
88	Plicidentine and the repeated origins of snake venom fangs. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211391.	2.6	19
89	Molecular clocks and the origin(s) of modern amphibians. Molecular Phylogenetics and Evolution, 2006, 40, 635-639.	2.7	18

Evaluating the drivers of Indoâ \in Pacific biodiversity: speciation and dispersal of sea snakes (Elapidae:) Tj ETQq0 0 0 0 ggBT /Overlock 10 Tf

6

90

#	Article	IF	CITATIONS
91	Molecular phylogeny of Chromodoris (Mollusca, Nudibranchia) and the identification of a planar spawning clade. Molecular Phylogenetics and Evolution, 2005, 36, 722-727.	2.7	17
92	Cretaceous Blind Snake from Brazil Fills Major Gap in Snake Evolution. IScience, 2020, 23, 101834.	4.1	17
93	Morphological phylogenetics and the universe of useful characters. Taxon, 2006, 55, 5-7.	0.7	16
94	Radiation of tropical island bees and the role of phylogenetic niche conservatism as an important driver of biodiversity. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200045.	2.6	16
95	The impact of molecular data on the phylogenetic position of the putative oldest crown crocodilian and the age of the clade. Biology Letters, 2022, 18, 20210603.	2.3	16
96	Reference taxa and phylogenetic nomenclature. Taxon, 1999, 48, 31-34.	0.7	15
97	Lions and brown bears colonized North America in multiple synchronous waves of dispersal across the Bering Land Bridge. Molecular Ecology, 2022, 31, 6407-6421.	3.9	15
98	Integration, individuality and species concepts. Biology and Philosophy, 2002, 17, 651-660.	1.4	14
99	Testing fossil calibrations for vertebrate molecular trees. Zoologica Scripta, 2011, 40, 538-543.	1.7	14
100	Plausibility of inferred ancestral phenotypes and the evaluation of alternative models of limb evolution in scincid lizards. Biology Letters, 2010, 6, 354-358.	2.3	13
101	Mammalian Evolution: A Jurassic Spark. Current Biology, 2015, 25, R759-R761.	3.9	13
102	The morphological diversity of the quadrate bone in squamate reptiles as revealed by highâ€resolution computed tomography and geometric morphometrics. Journal of Anatomy, 2020, 236, 210-227.	1.5	13
103	Point of View. Choosing reference taxa in phylogenetic nomenclature. Zoologica Scripta, 2005, 34, 329-331.	1.7	12
104	On the Lower Jaw and Intramandibular Septum in Snakes and Anguimorph Lizards. Copeia, 2001, 2001, 531-535.	1.3	11
105	REEVALUATION OF THE CRETACEOUS MARINE LIZARD ACTEOSAURUS CRASSICOSTATUS CALLIGARIS, 1993. Journal of Paleontology, 2004, 78, 617-619.	0.8	11
106	Holocene population expansion of a tropical bee coincides with early human colonization of Fiji rather than climate change. Molecular Ecology, 2021, 30, 4005-4022.	3.9	11
107	Model type, implicit data weighting, and model averaging in phylogenetics. Molecular Phylogenetics and Evolution, 2006, 38, 848-857.	2.7	10
108	Palaeoecological inferences for the fossil Australian snakes <i>Yurlunggur</i> and <i>Wonambi</i> (Serpentes, Madtsoiidae). Royal Society Open Science, 2018, 5, 172012.	2.4	10

#	Article	IF	Citations
109	Novel vascular plexus in the head of a sea snake (Elapidae, Hydrophiinae) revealed by high-resolution computed tomography and histology. Royal Society Open Science, 2019, 6, 191099.	2.4	10
110	Aipysurus mosaicus, a new species of egg-eating sea snake (Elapidae: Hydrophiinae), with a redescription of Aipysurus eydouxii (Gray, 1849). Zootaxa, 2012, 3431, 1.	0.5	9
111	Dynamic biogeographic models and dinosaur origins. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 325-332.	0.3	8
112	A new scincid lizard from the Miocene of northern Australia, and the evolutionary history of social skinks (Scincidae: Egerniinae). Journal of Vertebrate Paleontology, 2019, 39, e1577873.	1.0	8
113	Snake Origins. Science, 2000, 288, 1343c-1345.	12.6	8
114	Species concepts and the recognition of ancestors. Historical Biology, 1995, 10, 329-339.	1.4	7
115	Overcoming phylogenetic and geographic uncertainties to test for correlates of range size evolution in gymnophthalmid lizards. Ecography, 2017, 40, 764-773.	4.5	7
116	The phylogenetic significance of the morphology of the syrinx, hyoid and larynx, of the southern cassowary, Casuarius casuarius (Aves, Palaeognathae). BMC Evolutionary Biology, 2019, 19, 233.	3.2	7
117	<i>Tetrapodophis amplectus</i> is not a snake: re-assessment of the osteology, phylogeny and functional morphology of an Early Cretaceous dolichosaurid lizard. Journal of Systematic Palaeontology, 2021, 19, 893-952.	1.5	7
118	Divergent evolution, hierarchy and cladistics. Zoologica Scripta, 2002, 31, 217-219.	1.7	6
119	Palaeontology: Turtles in Transition. Current Biology, 2013, 23, R513-R515.	3.9	6
120	Epochâ€based likelihood models reveal no evidence for accelerated evolution of viviparity in squamate reptiles in response to cenozoic climate change. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 525-531.	1.3	6
121	Measuring Support for Phylogenies: The "Proportional Support Index". Cladistics, 1999, 15, 173-176.	3.3	5
122	The Overseas Development Institute And Its Publications. Journal of Modern African Studies, 1964, 2, 565-571.	0.6	3
123	Money talks louder than research quality. Nature, 1999, 397, 13-13.	27.8	3
124	Cambrian and Recent Morphological Disparity. Science, 1992, 258, 1816-1817.	12.6	3
125	Waiting for post-postmodernism. Mystery of Mysteries: Is Evolution a Social Construction? By Michael Ruse. Harvard University Press. 1999. xiii + 296 pp. ISBN 0-674-46706-X (hardback) Journal of Evolutionary Biology, 2000, 13, 348-351.	1.7	2
126	Evolution: Dampening the Cambrian Explosion. Current Biology, 2018, 28, R1353-R1355.	3.9	2

#	Article	IF	CITATIONS
127	An exceptional partial skeleton of a new basal raptor (Aves: Accipitridae) from the late Oligocene Namba formation, South Australia. Historical Biology, 0, , 1-33.	1.4	2
128	A late-surviving stem-ctenophore from the Late Devonian of Miguasha (Canada). Scientific Reports, 2021, 11, 19039.	3.3	2
129	The Extinction of Paleontology?. Science, 1997, 278, 1209-1213.	12.6	2
130	Clock Models for Evolution of Discrete Phenotypic Characters. , 2020, , 101-113.		2
131	An Overeating Profiling Self-report Questionnaire: phase I. Journal of Men's Health, 2010, 7, 373-379.	0.3	1
132	Redescription, taxonomy and phylogenetic relationships of <i>Boavus</i> Marsh, 1871 (Serpentes:) Tj ETQq0 0 0 1601-1622.	rgBT /Ove	rlock 10 Tf 5
133	New developments in ontogeny and phylogeny. Journal of Evolutionary Biology, 1999, 12, 199-200.	1.7	0
134	Evolution: Morphological saturation and release inÂmammals. Current Biology, 2021, 31, R838-R840.	3.9	0
135	The Call of Spirit: A Case Study in Phoenix Rising Yoga Therapy. International Journal of Yoga Therapy, 1994, 5, 34-36.	0.7	О