
Blanka Holendova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4265274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox SignalingReviewing Editors: <i>Jerzy Beltowski, Joseph Burgoyne, Gabor Csanyi, Sergey Dikalov, Frank Krause, Anibal Vercesi, and Jeremy Ward</i> Antioxidants and Redox Signaling, 2018, 29, 667-714.	5.4	93
2	Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules, 2018, 23, 1483.	3.8	60
3	Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4. Diabetes, 2020, 69, 1341-1354.	0.6	53
4	Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Amino Acids, 2011, 40, 741-748.	2.7	45
5	Calmodulin and S100A1 Protein Interact with N Terminus of TRPM3 Channel. Journal of Biological Chemistry, 2012, 287, 16645-16655.	3.4	43
6	Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 659-678.	1.0	31
7	PtdIns(4,5)P2interacts with CaM binding domains on TRPM3 N-terminus. Channels, 2012, 6, 479-482.	2.8	30
8	Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic <i>î²</i> -cells. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	30
9	Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules, 2020, 10, 93.	4.0	26
10	Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD ⁺ Ratio. Antioxidants and Redox Signaling, 2020, 33, 789-815.	5.4	25
11	Redox Homeostasis in Pancreatic \hat{l}^2 -Cells: From Development to Failure. Antioxidants, 2021, 10, 526.	5.1	22
12	Ca ²⁺ Binding Protein S100A1 Competes with Calmodulin and PIP2 for Binding Site on the C-Terminus of the TPRV1 Receptor. ACS Chemical Neuroscience, 2015, 6, 386-392.	3.5	18
13	Integrative Binding Sites within Intracellular Termini of TRPV1 Receptor. PLoS ONE, 2012, 7, e48437.	2.5	16
14	The Pancreatic \hat{I}^2 -Cell: The Perfect Redox System. Antioxidants, 2021, 10, 197.	5.1	16
15	The interactions of the C-terminal region of the TRPC6 channel with calmodulin. Neurochemistry International, 2010, 56, 363-366.	3.8	14
16	Characterization of the S100A1 Protein Binding Site on TRPC6 C-Terminus. PLoS ONE, 2013, 8, e62677.	2.5	13
17	Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2γ with Fatty Acid–Conducting SLC25 Gene Family Transporters. Antioxidants, 2021, 10, 678.	5.1	13
18	Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxidants and Redox Signaling, 2022, 36, 920-952.	5.4	10

Blanka Holendova

#	Article	IF	CITATIONS
19	Chronic n-3 fatty acid intake enhances insulin response to oral glucose and elevates GLP-1 in high-fat diet-fed obese mice. Food and Function, 2020, 11, 9764-9775.	4.6	9
20	SIRT3 and GCN5L regulation of NADP+- and NADPH-driven reactions of mitochondrial isocitrate dehydrogenase IDH2. Scientific Reports, 2020, 10, 8677.	3.3	8
21	Antioxidant Role and Cardiolipin Remodeling by Redox-Activated Mitochondrial Ca2+-Independent Phospholipase A2γ in the Brain. Antioxidants, 2022, 11, 198.	5.1	6
22	Glucose-Induced Expression of DAPIT in Pancreatic Î ² -Cells. Biomolecules, 2020, 10, 1026.	4.0	5
23	Poly(4-Styrenesulfonic Acid- <i>co</i> -maleic Anhydride)-Coated NaGdF ₄ :Yb,Tb,Nd Nanoparticles with Luminescence and Magnetic Properties for Imaging of Pancreatic Islets and β-Cells. ACS Applied Materials & Interfaces, 2022, , .	8.0	3
24	Mitochondrial Redox Signaling and Cristae Morphology Changes Upon 2-Keto-Isocaproate and Fatty Acid-Stimulated Insulin Secretion. Biophysical Journal, 2020, 118, 450a.	0.5	0
25	Redox Signaling is Essential for Insulin Secretion. , 0, , .		0