
Philippe Pasero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/426489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Cellular Iron Homeostasis with Ironomycin in Diffuse Large B-cell Lymphoma. Cancer Research, 2022, 82, 998-1012.	0.9	14
2	Top1p targeting by Fob1p at the ribosomal Replication Fork Barrier does not account for camptothecin sensitivity in cells MicroPublication Biology, 2022, 2022, .	0.1	0
3	Multiplexed-Based Assessment of DNA Damage Response to Chemotherapies Using Cell Imaging Cytometry. International Journal of Molecular Sciences, 2022, 23, 5701.	4.1	0
4	A Role for the Mre11-Rad50-Xrs2 Complex in Gene Expression and Chromosome Organization. Molecular Cell, 2021, 81, 183-197.e6.	9.7	15
5	High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS. Nature Protocols, 2021, 16, 1034-1061.	12.0	3
6	Topoisomerase I prevents transcription-replication conflicts at transcription termination sites. Molecular and Cellular Oncology, 2021, 8, 1843951.	0.7	8
7	RNA-sequencing data-driven dissection of human plasma cell differentiation reveals new potential transcription regulators. Leukemia, 2021, 35, 1451-1462.	7.2	30
8	The Replication Stress Response on a Narrow Path Between Genomic Instability and Inflammation. Frontiers in Cell and Developmental Biology, 2021, 9, 702584.	3.7	22
9	3D positioning of tagged DNA loci by widefield and super-resolution fluorescence imaging of fixed yeast nuclei. STAR Protocols, 2021, 2, 100525.	1.2	0
10	Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers, 2021, 13, 3755.	3.7	7
11	Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nature Reviews Cancer, 2021, 21, 701-717.	28.4	150
12	XAB2 promotes Ku eviction from single-ended DNA double-strand breaks independently of the ATM kinase. Nucleic Acids Research, 2021, 49, 9906-9925.	14.5	8
13	Toxic R-loops: Cause or consequence of replication stress?. DNA Repair, 2021, 107, 103199.	2.8	17
14	Replication stress: from chromatin to immunity and beyond. Current Opinion in Genetics and Development, 2021, 71, 136-142.	3.3	19
15	Exploiting Transcription-Replication Conflicts As a Novel Therapeutic Intervention in Multiple Myeloma. Blood, 2021, 138, 1582-1582.	1.4	0
16	Kinome expression profiling to target new therapeutic avenues in multiple myeloma. Haematologica, 2020, 105, 784-795.	3.5	33
17	MRX Increases Chromatin Accessibility at Stalled Replication Forks to Promote Nascent DNA Resection and Cohesin Loading. Molecular Cell, 2020, 77, 395-410.e3.	9.7	49
18	Top1 and Top2 promote replication fork arrest at a programmed pause site. Genes and Development, 2020, 34, 1-3.	5.9	13

#	Article	IF	CITATIONS
19	TDP-43 dysfunction results in R-loop accumulation and DNA replication defects. Journal of Cell Science, 2020, 133, .	2.0	35
20	Ethanol exposure increases mutation rate through error-prone polymerases. Nature Communications, 2020, 11, 3664.	12.8	29
21	Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nature Communications, 2020, 11, 3940.	12.8	105
22	Resolution of R-loops by INO80 promotes DNA replication and maintains cancer cell proliferation and viability. Nature Communications, 2020, 11, 4534.	12.8	63
23	Mec1 Is Activated at the Onset of Normal S Phase by Low-dNTP Pools Impeding DNA Replication. Molecular Cell, 2020, 78, 396-410.e4.	9.7	48
24	Sir2 takes affirmative action to ensure equal opportunity in replication origin licensing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16723-16725.	7.1	0
25	Hair follicle stem cell replication stress drives IFI16/STING-dependent inflammation in hidradenitis suppurativa. Journal of Clinical Investigation, 2020, 130, 3777-3790.	8.2	35
26	Homologous recombination and Mus81 promote replication completion in response to replication fork blockage. EMBO Reports, 2020, 21, e49367.	4.5	28
27	Overexpression of the Fork Protection Complex: a strategy to tolerate oncogene-induced replication stress in cancer cells. Molecular and Cellular Oncology, 2019, 6, 1607455.	0.7	2
28	qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nature Communications, 2019, 10, 2313.	12.8	40
29	EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2. Molecular Cell, 2019, 75, 605-619.e6.	9.7	26
30	Inhibition of Ataxia-Telangiectasia Mutated and RAD3-Related (<i>ATR</i>) Overcomes Oxaliplatin Resistance and Promotes Antitumor Immunity in Colorectal Cancer. Cancer Research, 2019, 79, 2933-2946.	0.9	46
31	Overexpression of Claspin and Timeless protects cancer cells from replication stress in a checkpoint-independent manner. Nature Communications, 2019, 10, 910.	12.8	105
32	DDR Inc., one business, two associates. Current Genetics, 2019, 65, 445-451.	1.7	24
33	SAMHD1 and the innate immune response to cytosolic DNA during DNA replication. Current Opinion in Immunology, 2019, 56, 24-30.	5.5	47
34	Ironomycin Induces Diffuse Large B-Cell Lymphoma Cell Death By Targeting Iron Metabolism Addiction. Blood, 2019, 134, 3960-3960.	1.4	0
35	Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nature Communications, 2018, 9, 533.	12.8	252
36	SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature, 2018, 557, 57-61.	27.8	319

#	Article	IF	CITATIONS
37	i-BLESS is an ultra-sensitive method for detection of DNA double-strand breaks. Communications Biology, 2018, 1, 181.	4.4	37
38	Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage. EMBO Journal, 2018, 37, .	7.8	54
39	DDK Has a Primary Role in Processing Stalled Replication Forks to Initiate Downstream Checkpoint Signaling. Neoplasia, 2018, 20, 985-995.	5.3	16
40	Signaling Pathways of Replication Stress in Yeast. FEMS Yeast Research, 2017, 17, fow101.	2.3	98
41	RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma. Leukemia, 2017, 31, 2104-2113.	7.2	68
42	Nuclear DNA replication and repair in parasites of the genus <i>Leishmania</i> : Exploiting differences to develop innovative therapeutic approaches. Critical Reviews in Microbiology, 2017, 43, 156-177.	6.1	16
43	Transcription-Replication Conflicts: Orientation Matters. Cell, 2017, 170, 603-604.	28.9	14
44	Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annual Review of Genetics, 2017, 51, 477-499.	7.6	90
45	Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing. Genes and Development, 2017, 31, 2405-2415.	5.9	53
46	Single-molecule Analysis of DNA Replication Dynamics in Budding Yeast and Human Cells by DNA Combing. Bio-protocol, 2017, 7, e2305.	0.4	8
47	RPA Mediates Recruitment of MRX to Forks and Double-Strand Breaks to Hold Sister Chromatids Together. Molecular Cell, 2016, 64, 951-966.	9.7	57
48	RECQ helicases are deregulated in hematological malignancies in association with a prognostic value. Biomarker Research, 2016, 4, 3.	6.8	16
49	Phosphorylation of CMG helicase and Tof1 is required for programmed fork arrest. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3639-48.	7.1	25
50	Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes and Development, 2016, 30, 337-354.	5.9	103
51	A Small Molecule That Selectively Targets BLM Helicase Has a Therapeutic Interest in Multiple Myeloma. Blood, 2016, 128, 4433-4433.	1.4	1
52	Essential Roles of the Smc5/6 Complex in Replication through Natural Pausing Sites and Endogenous DNA Damage Tolerance. Molecular Cell, 2015, 60, 835-846.	9.7	98
53	<scp>DNA</scp> repair in diffuse large Bâ€cell lymphoma: a molecular portrait. British Journal of Haematology, 2015, 169, 296-299.	2.5	12
54	Inhibition of SUV39H Methyltransferase As a Potent Therapeutic Target in Multiple Myeloma. Blood, 2015, 126, 1771-1771.	1.4	3

#	Article	IF	CITATIONS
55	Caught in the Act: R-Loops Are Cleaved by Structure-Specific Endonucleases to Generate DSBs. Molecular Cell, 2014, 56, 721-722.	9.7	6
56	Closing the MCM cycle at replication termination sites. EMBO Reports, 2014, 15, 1226-1227.	4.5	11
57	New histone supply regulates replication fork speed and PCNA unloading. Journal of Cell Biology, 2014, 204, 29-43.	5.2	132
58	Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1899-908.	7.1	55
59	The causes of replication stress and their consequences on genome stability and cell fate. Seminars in Cell and Developmental Biology, 2014, 30, 154-164.	5.0	116
60	The Histone Deacetylases Sir2 and Rpd3 Act on Ribosomal DNA to Control the Replication Program in Budding Yeast. Molecular Cell, 2014, 54, 691-697.	9.7	95
61	SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood, 2014, 123, 1021-1031.	1.4	205
62	The replication timing program in the hands of two HDACs. Microbial Cell, 2014, 1, 273-275.	3.2	1
63	A DNA repair pathway score predicts survival in human multiple myeloma: the potential for therapeutic strategy. Oncotarget, 2014, 5, 2487-2498.	1.8	42
64	DNA polymerase η modulates replication fork progression and DNA damage responses in platinum-treated human cells. Scientific Reports, 2013, 3, 3277.	3.3	23
65	Time to Be Versatile: Regulation of the Replication Timing Program in Budding Yeast. Journal of Molecular Biology, 2013, 425, 4696-4705.	4.2	28
66	Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nature Methods, 2013, 10, 361-365.	19.0	409
67	Genetic and epigenetic determinants of DNA replication origins, position and activation. Current Opinion in Genetics and Development, 2013, 23, 124-131.	3.3	101
68	Rescuing Stalled or Damaged Replication Forks. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012815-a012815.	5.5	197
69	DNA repair pathways in human multiple myeloma. Cell Cycle, 2013, 12, 2760-2773.	2.6	52
70	dNTP pools determine fork progression and origin usage under replication stress. EMBO Journal, 2012, 31, 883-894.	7.8	232
71	Histone H3 Lysine 56 Acetylation and the Response to DNA Replication Fork Damage. Molecular and Cellular Biology, 2012, 32, 154-172.	2.3	77
72	DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis, 2012, 1, e30-e30.	4.9	81

#	Article	IF	CITATIONS
73	Cohesin Association to Replication Sites Depends on Rad50 and Promotes Fork Restart. Molecular Cell, 2012, 48, 98-108.	9.7	108
74	Interference Between DNA Replication and Transcription as a Cause of Genomic Instability. Current Genomics, 2012, 13, 65-73.	1.6	46
75	Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods, 2012, 57, 149-157.	3.8	88
76	Abstract B4: A "DNA replication stress―gene signature associated with a poor prognosis in early non-small cell lung cancer. Clinical Cancer Research, 2012, 18, B4-B4.	7.0	0
77	New Topoisomerase I mutations are associated with resistance to camptothecin. Molecular Cancer, 2011, 10, 64.	19.2	56
78	Defining replication origin efficiency using DNA fiber assays. Chromosome Research, 2010, 18, 91-102.	2.2	61
79	Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nature Structural and Molecular Biology, 2010, 17, 1391-1397.	8.2	112
80	A â€~DNA replication' signature of progression and negative outcome in colorectal cancer. Oncogene, 2010, 29, 876-887.	5.9	95
81	RNAi-based screening identifies the Mms22L–Nfkbil2 complex as a novel regulator of DNA replication in human cells. EMBO Journal, 2010, 29, 4210-4222.	7.8	66
82	The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Research, 2010, 38, 6502-6512.	14.5	70
83	Transcription and replication. Transcription, 2010, 1, 99-102.	3.1	30
84	Does interference between replication and transcription contribute to genomic instability in cancer cells?. Cell Cycle, 2010, 9, 1886-1892.	2.6	27
85	Exo1 Competes with Repair Synthesis, Converts NER Intermediates to Long ssDNA Gaps, and Promotes Checkpoint Activation. Molecular Cell, 2010, 40, 50-62.	9.7	99
86	Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proceedings of the United States of America, 2009, 106, 7525-7530.	7.1	75
87	The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO Journal, 2009, 28, 1142-1156.	7.8	79
88	Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint. EMBO Journal, 2009, 28, 1131-1141.	7.8	87
89	Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biology, 2009, 11, 1315-1324.	10.3	445
90	Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nature Structural and Molecular Biology, 2009, 16, 1167-1172.	8.2	88

#	Article	IF	CITATIONS
91	Rtt101 and Mms1 in budding yeast form a CUL4 ^{DDB1} â€like ubiquitin ligase that promotes replication through damaged DNA. EMBO Reports, 2008, 9, 1034-1040.	4.5	91
92	Upregulation of Error-Prone DNA Polymerases Beta and Kappa Slows Down Fork Progression Without Activating the Replication Checkpoint. Cell Cycle, 2007, 6, 471-477.	2.6	44
93	Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses. Science, 2007, 315, 1411-1415.	12.6	121
94	Phosphorylation of Slx4 by Mec1 and Tel1 Regulates the Single-Strand Annealing Mode of DNA Repair in Budding Yeast. Molecular and Cellular Biology, 2007, 27, 6433-6445.	2.3	89
95	Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair, 2007, 6, 900-913.	2.8	120
96	An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes. EMBO Journal, 2006, 25, 5150-5158.	7.8	55
97	The Cullin Rtt101p Promotes Replication Fork Progression through Damaged DNA and Natural Pause Sites. Current Biology, 2006, 16, 786-792.	3.9	89
98	Mrc1 and Tof1 Promote Replication Fork Progression and Recovery Independently of Rad53. Molecular Cell, 2005, 19, 699-706.	9.7	243
99	Mitotic Remodeling of the Replicon and Chromosome Structure. Cell, 2005, 123, 787-801.	28.9	175
100	The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO Journal, 2003, 22, 1939-1949.	7.8	93
101	Multiple Roles of Replication Forks in S Phase Checkpoints: Sensors, Effectors and Targets. Cell Cycle, 2003, 2, 567-571.	2.6	23
102	Multiple roles of replication forks in S phase checkpoints: sensors, effectors and targets. Cell Cycle, 2003, 2, 568-72.	2.6	19
103	An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16087-16092.	7.1	88
104	ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes and Development, 2002, 16, 3236-3252.	5.9	188
105	In vitro DNA replication assays in yeast extracts. Methods in Enzymology, 2002, 351, 184-199.	1.0	2
106	Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes and Development, 2002, 16, 2479-2484.	5.9	206
107	Monitoring S phase progression globally and locally using BrdU incorporation in TK+ yeast strains. Nucleic Acids Research, 2001, 29, 1433-1442.	14.5	152
108	Think global, act local — how to regulate S phase from individual replication origins. Current Opinion in Genetics and Development, 2000, 10, 178-186.	3.3	30

#	Article	IF	CITATIONS
109	Short DNA Fragments without Sequence Similarity Are Initiation Sites for Replication in the Chromosome of the Yeast <i>Yarrowia lipolytica</i> . Molecular Biology of the Cell, 1999, 10, 757-769.	2.1	19
110	In Vitro DNA Replication in Yeast Nuclear Extracts. Methods, 1999, 18, 368-376.	3.8	7
111	Cyclin B-Cdk1 Kinase Stimulates ORC- and Cdc6-Independent Steps of Semiconservative Plasmid Replication in Yeast Nuclear Extracts. Molecular and Cellular Biology, 1999, 19, 1226-1241.	2.3	24
112	A role for the Cdc7 kinase regulatory subunit Dbf4p in the formation of initiation-competent origins of replication. Genes and Development, 1999, 13, 2159-2176.	5.9	114
113	New systems for replicating DNA in vitro. Current Opinion in Cell Biology, 1998, 10, 304-310.	5.4	20
114	Semi-conservative replication in yeast nuclear extracts requires Dna2 helicase and supercoiled template 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1998, 281, 631-649.	4.2	28
115	ORC-dependent and origin-specific initiation of DNA replication at defined foci in isolated yeast nuclei Genes and Development, 1997, 11, 1504-1518.	5.9	56
116	Common DNA Structural Features Exhibited by Eukaryotic Ribosomal Gene Promoters. Nucleic Acids Research, 1996, 24, 2204-2211.	14.5	61
117	Scanning tunneling microscopy study of a DNA fragment of known size and sequence. Microscopy Microanalysis Microstructures, 1994, 5, 47-56.	0.4	5
118	Size variation of rDNA clusters in the yeasts Saccharomyces cerevisiea and Schizosaccharomyces pombe. Molecular Genetics and Genomics, 1993, 236-236, 448-452.	2.4	45
119	Long-range organization and sequence-directed curvature of <i>Xenopus laevis</i> satellite 1 DNA. Nucleic Acids Research, 1993, 21, 4703-4710.	14.5	44
120	Molecular dissection of a specific nuclear domain: The chromatin region of the ribosomal gene cluster in Xenopus laevis. Experimental Cell Research, 1992, 202, 87-97.	2.6	5