Simon L Croft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4264307/publications.pdf

Version: 2024-02-01

112 papers 12,138 citations

44069 48 h-index 26613 107 g-index

117 all docs

117 docs citations

117 times ranked

10645 citing authors

#	Article	IF	CITATIONS
1	Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis – challenges and opportunities. RSC Medicinal Chemistry, 2021, 12, 472-482.	3.9	7
2	Marine alkaloids as bioactive agents against protozoal neglected tropical diseases and malaria. Natural Product Reports, 2021, 38, 2214-2235.	10.3	30
3	Costs and outcomes of active and passive case detection for visceral leishmaniasis (Kala-Azar) to inform elimination strategies in Bihar, India. PLoS Neglected Tropical Diseases, 2021, 15, e0009129.	3.0	2
4	Pharmacokinetic / pharmacodynamic relationships of liposomal amphotericin B and miltefosine in experimental visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2021, 15, e0009013.	3.0	4
5	Drug reformulation for a neglected disease. The NANOHAT project to develop a safer more effective sleeping sickness drug. PLoS Neglected Tropical Diseases, 2021, 15, e0009276.	3.0	2
6	Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics, 2021, 13, 516.	4.5	11
7	Chitosan Contribution to Therapeutic and Vaccinal Approaches for the Control of Leishmaniasis. Molecules, 2020, 25, 4123.	3.8	5
8	Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis. Molecules, 2020, 25, 4002.	3.8	35
9	Novel 2D and 3D Assays to Determine the Activity of Anti-Leishmanial Drugs. Microorganisms, 2020, 8, 831.	3. 6	12
10	Leishmaniasis immunopathologyâ€"impact on design and use of vaccines, diagnostics and drugs. Seminars in Immunopathology, 2020, 42, 247-264.	6.1	51
11	Activity of Chitosan and Its Derivatives against Leishmania major and Leishmania mexicana <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	24
12	Development of an in vitro media perfusion model of Leishmania major macrophage infection. PLoS ONE, 2019, 14, e0219985.	2.5	10
13	Pharmacokinetics and Pharmacodynamics of the Nitroimidazole DNDI-0690 in Mouse Models of Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	25
14	Innovations for the elimination and control of visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2019, 13, e0007616.	3.0	34
15	Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 106-117.	3.4	58
16	Leishmaniasis – Authors' reply. Lancet, The, 2019, 393, 872-873.	13.7	16
17	Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 129-138.	3.4	44
18	Tissue-specific transcriptomic changes associated with AmBisome \hat{A}^{\otimes} treatment of BALB/c mice with experimental visceral leishmaniasis. Wellcome Open Research, 2019, 4, 198.	1.8	8

#	Article	IF	Citations
19	Pharmacodynamics and cellular accumulation of amphotericin B and miltefosine in Leishmania donovani-infected primary macrophages. Journal of Antimicrobial Chemotherapy, 2018, 73, 1314-1323.	3.0	9
20	Topical Treatment for Cutaneous Leishmaniasis: Dermato-Pharmacokinetic Lead Optimization of Benzoxaboroles. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	29
21	Comparative efficacy, toxicity and biodistribution of the liposomal amphotericin B formulations Fungisome® and AmBisome® in murine cutaneous leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 223-228.	3.4	37
22	Relation between Skin Pharmacokinetics and Efficacy in AmBisome Treatment of Murine Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	28
23	<i>Leishmania</i> and other intracellular pathogens: selectivity, drug distribution and PK–PD. Parasitology, 2018, 145, 237-247.	1.5	15
24	The Challenges of Effective Leishmaniasis Treatment. , 2018, , 193-206.		3
25	Leishmaniasis. Lancet, The, 2018, 392, 951-970.	13.7	1,264
26	Local Skin Inflammation in Cutaneous Leishmaniasis as a Source of Variable Pharmacokinetics and Therapeutic Efficacy of Liposomal Amphotericin B. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	23
27	Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Research, 2018, 3, 135.	1.8	21
28	Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Research, 2018, 3, 135.	1.8	22
29	Antiprotozoal glutathione derivatives with flagellar membrane binding activity against T. brucei rhodesiense. Bioorganic and Medicinal Chemistry, 2017, 25, 1329-1340.	3.0	2
30	Pharmacodynamics and Biodistribution of Single-Dose Liposomal Amphotericin B at Different Stages of Experimental Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	23
31	Dose-dependent effect and pharmacokinetics of fexinidazole and its metabolites in a mouse model of human African trypanosomiasis. International Journal of Antimicrobial Agents, 2017, 50, 203-209.	2.5	11
32	Efficacy of Paromomycin-Chloroquine Combination Therapy in Experimental Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	27
33	A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nature Communications, 2017, 8, 430.	12.8	110
34	In Vivo and In Vitro Activities and ADME-Tox Profile of a Quinolizidine-Modified 4-Aminoquinoline: A Potent Anti-P. falciparum and Anti-P. vivax Blood-Stage Antimalarial. Molecules, 2017, 22, 2102.	3.8	12
35	Antileishmanial and antitrypanosomal drug identification. Emerging Topics in Life Sciences, 2017, 1, 613-620.	2.6	5
36	Topical formulations of miltefosine for cutaneous leishmaniasis in a BALB/c mouse model. Journal of Pharmacy and Pharmacology, 2016, 68, 862-872.	2.4	39

#	Article	IF	CITATIONS
37	A Replicative <i>In Vitro</i> Assay for Drug Discovery against Leishmania donovani. Antimicrobial Agents and Chemotherapy, 2016, 60, 3524-3532.	3.2	52
38	Neglected tropical diseases in the genomics era: re-evaluating the impact of new drugs and mass drug administration. Genome Biology, 2016, 17, 46.	8.8	8
39	Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India. Parasites and Vectors, 2016, 9, 25.	2.5	55
40	Drug permeation and barrier damage in <i>Leishmania</i> -infected mouse skin. Journal of Antimicrobial Chemotherapy, 2016, 71, 1578-1585.	3.0	42
41	Sequential Chemoimmunotherapy of Experimental Visceral Leishmaniasis Using a Single Low Dose of Liposomal Amphotericin B and a Novel DNA Vaccine Candidate. Antimicrobial Agents and Chemotherapy, 2015, 59, 5819-5823.	3.2	35
42	A sensitive and reproducible in vivo imaging mouse model for evaluation of drugs against late-stage human African trypanosomiasis. Journal of Antimicrobial Chemotherapy, 2015, 70, 510-517.	3.0	19
43	Biomedicine and Biotechnology: Public Health Impact. BioMed Research International, 2014, 2014, 1-2.	1.9	1
44	Modular Multiantigen T Cell Epitope–Enriched DNA Vaccine Against Human Leishmaniasis. Science Translational Medicine, 2014, 6, 234ra56.	12.4	60
45	Emerging paradigms in anti-infective drug design. Parasitology, 2014, 141, 1-7.	1.5	24
46	Activity of anti-cancer protein kinase inhibitors against Leishmania spp Journal of Antimicrobial Chemotherapy, 2014, 69, 1888-1891.	3.0	50
47	Antileishmanial Activity, Uptake, and Biodistribution of an Amphotericin B and Poly(α-Glutamic Acid) Complex. Antimicrobial Agents and Chemotherapy, 2013, 57, 4608-4614.	3.2	18
48	Case study for a vaccine against leishmaniasis. Vaccine, 2013, 31, B244-B249.	3.8	97
49	Preparation and characterisation of amphotericin B-copolymer complex for the treatment of leishmaniasis. Polymer Chemistry, 2013, 4, 584-591.	3.9	8
50	The Relevance of Susceptibility Tests, Breakpoints, and Markers., 2013,, 407-429.		12
51	Highly Sensitive In Vivo Imaging of Trypanosoma brucei Expressing "Red-Shifted―Luciferase. PLoS Neglected Tropical Diseases, 2013, 7, e2571.	3.0	56
52	Anti-infectives., 2013,, 429-464.		1
53	Management of trypanosomiasis and leishmaniasis. British Medical Bulletin, 2012, 104, 175-196.	6.9	240
54	Review of pyronaridine anti-malarial properties and product characteristics. Malaria Journal, 2012, 11, 270.	2.3	116

#	Article	IF	CITATIONS
55	Leishmaniasis chemotherapyâ€"challenges and opportunities. Clinical Microbiology and Infection, 2011, 17, 1478-1483.	6.0	353
56	In-vitro and in-vivo studies on a topical formulation of sitamaquine dihydrochloride for cutaneous leishmaniasis. Journal of Pharmacy and Pharmacology, 2010, 58, 1043-1054.	2.4	29
57	Topical buparvaquone formulations for the treatment of cutaneous leishmaniasis. Journal of Pharmacy and Pharmacology, 2010, 59, 41-49.	2.4	25
58	Anti-African trypanocidal and antimalarial activity of natural flavonoids, dibenzoylmethanes and synthetic analogues. Journal of Pharmacy and Pharmacology, 2010, 61, 257-266.	2.4	12
59	Collaborative actions in anti-trypanosomatid chemotherapy with partners from disease endemic areas. Trends in Parasitology, 2010, 26, 395-403.	3.3	35
60	In vitro activity of anti-leishmanial drugs against Leishmania donovani is host cell dependent. Journal of Antimicrobial Chemotherapy, 2010, 65, 508-511.	3.0	107
61	Antiprotozoal agents. , 2010, , 406-426.		2
62	Susceptibilidad in vitro a hexadecilfosfocolina (miltefosina), nifurtimox y benznidazole de cepas de Trypanosoma cruzi aisladas en Santander, Colombia. Biomedica, 2009, 29, 448.	0.7	46
63	Anti-malarial efficacy of pyronaridine and artesunate in combination in vitro and in vivo. Acta Tropica, 2008, 105, 222-228.	2.0	52
64	Kinetoplastids: related protozoan pathogens, different diseases. Journal of Clinical Investigation, 2008, 118, 1301-1310.	8.2	460
65	PKDLa drug related phenomenon?. Indian Journal of Medical Research, 2008, 128, 10-1.	1.0	11
66	In vivo studies on the antileishmanial activity of buparvaquone and its prodrugs. Journal of Antimicrobial Chemotherapy, 2007, 60, 802-810.	3.0	55
67	Antileishmanial Structure-Activity Relationships of Synthetic Phospholipids: In Vitro and In Vivo Activities of Selected Derivatives. Antimicrobial Agents and Chemotherapy, 2007, 51, 4525-4528.	3.2	17
68	Consultative meeting to develop a strategy for treatment of cutaneous leishmaniasis. Institute Pasteur, Paris. 13–15 June, 2006. Parasites and Vectors, 2007, 6, 3.	1.9	68
69	Drug Resistance in Leishmaniasis. Clinical Microbiology Reviews, 2006, 19, 111-126.	13.6	1,374
70	Chemotherapy in the Treatment and Control of Leishmaniasis. Advances in Parasitology, 2006, 61, 223-274.	3.2	215
71	Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use. Drug Resistance Updates, 2006, 9, 26-39.	14.4	172
72	Miltefosine – discovery of the antileishmanial activity of phospholipid derivatives. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 100, S4-S8.	1.8	128

#	Article	IF	Citations
73	Cover Picture: Artemisone—A Highly Active Antimalarial Drug of the Artemisinin Class (Angew. Chem.) Tj ETQq1	1 ₁ 0.78431	4 rgBT /Ov
74	In Vitro and In Vivo Interactions between Miltefosine and Other Antileishmanial Drugs. Antimicrobial Agents and Chemotherapy, 2006, 50, 73-79.	3.2	180
75	Current scenario of drug development for leishmaniasis. Indian Journal of Medical Research, 2006, 123, 399-410.	1.0	125
76	Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews Drug Discovery, 2004, 3, 509-520.	46.4	633
77	Antikinetoplastid activity of 3-aryl-5-thiocyanatomethyl-1,2,4-oxadiazoles. Bioorganic and Medicinal Chemistry, 2004, 12, 2815-2824.	3.0	79
78	Synthesis and antileishmanial activity of novel buparvaquone oxime derivatives. Bioorganic and Medicinal Chemistry, 2004, 12, 3497-3502.	3.0	28
79	Synthesis and antileishmanial activity of novel buparvaquone oxime derivatives. Bioorganic and Medicinal Chemistry, 2004, 12, 3497-3497.	3.0	2
80	Synthesis, in Vitro Evaluation, and Antileishmanial Activity of Water-Soluble Prodrugs of Buparvaquone. Journal of Medicinal Chemistry, 2004, 47, 188-195.	6.4	88
81	Leishmaniasis– current chemotherapy and recent advances in the search for novel drugs. Trends in Parasitology, 2003, 19, 502-508.	3.3	741
82	Antiprotozoal activities of phospholipid analogues. Molecular and Biochemical Parasitology, 2003, 126, 165-172.	1.1	161
83	Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). International Journal of Antimicrobial Agents, 2003, 22, 380-387.	2.5	157
84	Leishmaniasis: new approaches to disease control. BMJ: British Medical Journal, 2003, 326, 377-382.	2.3	231
85	Azasterols as Inhibitors of Sterol 24-Methyltransferase in Leishmania Species and Trypanosoma cruzi. Journal of Medicinal Chemistry, 2003, 46, 4714-4727.	6.4	96
86	In Vivo Activities of Farnesyl Pyrophosphate Synthase Inhibitors against Leishmania donovani and Toxoplasma gondii. Antimicrobial Agents and Chemotherapy, 2002, 46, 929-931.	3.2	115
87	Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH3 (edelfosine) and amphotericin B. Acta Tropica, 2002, 81, 151-157.	2.0	210
88	Chemotherapy of Leishmaniasis. Current Pharmaceutical Design, 2002, 8, 319-342.	1.9	321
89	Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infectious Diseases, The, 2002, 2, 494-501.	9.1	678
90	Drug sensitivity of Leishmania species: some unresolved problems. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2002, 96, S127-S129.	1.8	50

#	Article	IF	Citations
91	Topical treatment for cutaneous leishmaniasis. Current Opinion in Investigational Drugs, 2002, 3, 538-44.	2.3	50
92	Synthesis and Evaluation of Cryptolepine Analogues for Their Potential as New Antimalarial Agents. Journal of Medicinal Chemistry, 2001, 44, 3187-3194.	6.4	170
93	Bisphosphonates Inhibit the Growth of Trypanosomabrucei, Trypanosomabrucei, Trypanosomacruzi, Leishmaniadonovani, Toxoplasmagondii, and Plasmodium falciparum: Â A Potential Route to Chemotherapy. Journal of Medicinal Chemistry, 2001, 44, 909-916.	6.4	312
94	2- and 3-Substituted 1,4-Naphthoquinone Derivatives as Subversive Substrates of Trypanothione Reductase and Lipoamide Dehydrogenase from Trypanosomacruzi: Â Synthesis and Correlation between Redox Cycling Activities and in Vitro Cytotoxicity. Journal of Medicinal Chemistry, 2001, 44, 548-565.	6.4	250
95	Monitoring drug resistance in leishmaniasis. Tropical Medicine and International Health, 2001, 6, 899-905.	2.3	102
96	Antimalarial Chemotherapy: Mechanisms of Action, Resistance and New Directions in Drug Discovery. Drug Discovery Today, 2001, 6, 1151.	6.4	9
97	Activities of Hexadecylphosphocholine (Miltefosine), AmBisome, and Sodium Stibogluconate (Pentostam) against Leishmania donovani in Immunodeficient scid Mice. Antimicrobial Agents and Chemotherapy, 2001, 45, 1872-1875.	3.2	86
98	Oxoaporphine Alkaloids and Quinones from Stephania dinklagei and Evaluation of Their Antiprotozoal Activities. Planta Medica, 2000, 66, 478-480.	1.3	61
99	Activity of the Novel Immunomodulatory Compound Tucaresol against Experimental Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2000, 44, 1494-1498.	3.2	37
100	Activity of Extracts and Isolated Naphthoquinones from Kigelia pinnata against Plasmodium falciparum. Journal of Natural Products, 2000, 63, 1306-1309.	3.0	61
101	A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. International Journal of Antimicrobial Agents, 2000, 13, 243-248.	2.5	150
102	Use of an Additional Hydrophobic Binding Site, the Z Site, in the Rational Drug Design of a New Class of Stronger Trypanothione Reductase Inhibitor, Quaternary Alkylammonium Phenothiazines§. Journal of Medicinal Chemistry, 2000, 43, 3148-3156.	6.4	108
103	Pharmacological Approaches to Antitrypanosomal Chemotherapy. Memorias Do Instituto Oswaldo Cruz, 1999, 94, 215-220.	1.6	39
104	Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochemical Pharmacology, 1999, 58, 1791-1799.	4.4	92
105	In vitro antitrypanosomal activity ofMoringa stenopetala leaves and roots. , 1999, 13, 538-539.		43
106	Design, Synthesis, and Evaluation of Inhibitors of Trypanosomal and Leishmanial Dihydrofolate Reductase. Journal of Medicinal Chemistry, 1999, 42, 4300-4312.	6.4	79
107	Phenothiazine Inhibitors of Trypanothione Reductase as Potential Antitrypanosomal and Antileishmanial Drugsâ€. Journal of Medicinal Chemistry, 1998, 41, 148-156.	6.4	148
108	In vitro Activity of Diospyrin and Derivatives against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei brucei. Phytotherapy Research, 1996, 10, 559-562.	5.8	49

SIMON L CROFT

#	Article	lF	CITATION
109	The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Journal of Antimicrobial Chemotherapy, 1996, 38, 1041-1047.	3.0	175
110	In vitro Activity of Diospyrin and Derivatives against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei brucei. Phytotherapy Research, 1996, 10, 559-562.	5. 8	2
111	Pharmacokinetics of antimony in patients treated with sodium stibogluconate for cutaneous leishmaniasis. Pharmaceutical Research, 1995, 12, 113-116.	3.5	26
112	Antileishmanial activity of harmaline and other tryptamine derivatives. Phytotherapy Research, 1987, 1, 25-27.	5.8	22