
Simon L Croft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4264307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drug Resistance in Leishmaniasis. Clinical Microbiology Reviews, 2006, 19, 111-126.	13.6	1,374
2	Leishmaniasis. Lancet, The, 2018, 392, 951-970.	13.7	1,264
3	Leishmaniasis– current chemotherapy and recent advances in the search for novel drugs. Trends in Parasitology, 2003, 19, 502-508.	3.3	741
4	Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infectious Diseases, The, 2002, 2, 494-501.	9.1	678
5	Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews Drug Discovery, 2004, 3, 509-520.	46.4	633
6	Kinetoplastids: related protozoan pathogens, different diseases. Journal of Clinical Investigation, 2008, 118, 1301-1310.	8.2	460
7	Leishmaniasis chemotherapy—challenges and opportunities. Clinical Microbiology and Infection, 2011, 17, 1478-1483.	6.0	353
8	Chemotherapy of Leishmaniasis. Current Pharmaceutical Design, 2002, 8, 319-342.	1.9	321
9	Bisphosphonates Inhibit the Growth ofTrypanosomabrucei,Trypanosomacruzi,Leishmaniadonovani,Toxoplasmagondii, andPlasmodiumfalciparum:Â A Potential Route to Chemotherapy. Journal of Medicinal Chemistry, 2001, 44. 909-916.	6.4	312
10	2- and 3-Substituted 1,4-Naphthoquinone Derivatives as Subversive Substrates of Trypanothione Reductase and Lipoamide Dehydrogenase fromTrypanosomacruzi:Â Synthesis and Correlation between Redox Cycling Activities and in Vitro Cytotoxicity. Journal of Medicinal Chemistry, 2001, 44, 548-565.	6.4	250
11	Management of trypanosomiasis and leishmaniasis. British Medical Bulletin, 2012, 104, 175-196.	6.9	240
12	Leishmaniasis: new approaches to disease control. BMJ: British Medical Journal, 2003, 326, 377-382.	2.3	231
13	Chemotherapy in the Treatment and Control of Leishmaniasis. Advances in Parasitology, 2006, 61, 223-274.	3.2	215
14	Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH3 (edelfosine) and amphotericin B. Acta Tropica, 2002, 81, 151-157.	2.0	210
15	In Vitro and In Vivo Interactions between Miltefosine and Other Antileishmanial Drugs. Antimicrobial Agents and Chemotherapy, 2006, 50, 73-79.	3.2	180
16	The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Journal of Antimicrobial Chemotherapy, 1996, 38, 1041-1047.	3.0	175
17	Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use. Drug Resistance Updates, 2006, 9, 26-39.	14.4	172
18	Synthesis and Evaluation of Cryptolepine Analogues for Their Potential as New Antimalarial Agents. Journal of Medicinal Chemistry, 2001, 44, 3187-3194.	6.4	170

#	Article	IF	CITATIONS
19	Antiprotozoal activities of phospholipid analogues. Molecular and Biochemical Parasitology, 2003, 126, 165-172.	1.1	161
20	Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). International Journal of Antimicrobial Agents, 2003, 22, 380-387.	2.5	157
21	A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. International Journal of Antimicrobial Agents, 2000, 13, 243-248.	2.5	150
22	Phenothiazine Inhibitors of Trypanothione Reductase as Potential Antitrypanosomal and Antileishmanial Drugsâ€. Journal of Medicinal Chemistry, 1998, 41, 148-156.	6.4	148
23	Miltefosine – discovery of the antileishmanial activity of phospholipid derivatives. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 100, S4-S8.	1.8	128
24	Current scenario of drug development for leishmaniasis. Indian Journal of Medical Research, 2006, 123, 399-410.	1.0	125
25	Review of pyronaridine anti-malarial properties and product characteristics. Malaria Journal, 2012, 11, 270.	2.3	116
26	In Vivo Activities of Farnesyl Pyrophosphate Synthase Inhibitors against Leishmania donovani and Toxoplasma gondii. Antimicrobial Agents and Chemotherapy, 2002, 46, 929-931.	3.2	115
27	A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nature Communications, 2017, 8, 430.	12.8	110
28	Use of an Additional Hydrophobic Binding Site, the Z Site, in the Rational Drug Design of a New Class of Stronger Trypanothione Reductase Inhibitor, Quaternary Alkylammonium Phenothiazines§. Journal of Medicinal Chemistry, 2000, 43, 3148-3156.	6.4	108
29	In vitro activity of anti-leishmanial drugs against Leishmania donovani is host cell dependent. Journal of Antimicrobial Chemotherapy, 2010, 65, 508-511.	3.0	107
30	Monitoring drug resistance in leishmaniasis. Tropical Medicine and International Health, 2001, 6, 899-905.	2.3	102
31	Case study for a vaccine against leishmaniasis. Vaccine, 2013, 31, B244-B249.	3.8	97
32	Azasterols as Inhibitors of Sterol 24-Methyltransferase in Leishmania Species and Trypanosoma cruzi. Journal of Medicinal Chemistry, 2003, 46, 4714-4727.	6.4	96
33	Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochemical Pharmacology, 1999, 58, 1791-1799.	4.4	92
34	Synthesis, in Vitro Evaluation, and Antileishmanial Activity of Water-Soluble Prodrugs of Buparvaquone. Journal of Medicinal Chemistry, 2004, 47, 188-195.	6.4	88
35	Activities of Hexadecylphosphocholine (Miltefosine), AmBisome, and Sodium Stibogluconate (Pentostam) against Leishmania donovani in Immunodeficient scid Mice. Antimicrobial Agents and Chemotherapy, 2001, 45, 1872-1875.	3.2	86
36	Design, Synthesis, and Evaluation of Inhibitors of Trypanosomal and Leishmanial Dihydrofolate Reductase. Journal of Medicinal Chemistry, 1999, 42, 4300-4312.	6.4	79

#	Article	IF	CITATIONS
37	Antikinetoplastid activity of 3-aryl-5-thiocyanatomethyl-1,2,4-oxadiazoles. Bioorganic and Medicinal Chemistry, 2004, 12, 2815-2824.	3.0	79
38	Consultative meeting to develop a strategy for treatment of cutaneous leishmaniasis. Institute Pasteur, Paris. 13–15 June, 2006. Parasites and Vectors, 2007, 6, 3.	1.9	68
39	Oxoaporphine Alkaloids and Quinones from Stephania dinklagei and Evaluation of Their Antiprotozoal Activities. Planta Medica, 2000, 66, 478-480.	1.3	61
40	Activity of Extracts and Isolated Naphthoquinones fromKigelia pinnataagainstPlasmodium falciparum. Journal of Natural Products, 2000, 63, 1306-1309.	3.0	61
41	Modular Multiantigen T Cell Epitope–Enriched DNA Vaccine Against Human Leishmaniasis. Science Translational Medicine, 2014, 6, 234ra56.	12.4	60
42	Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 106-117.	3.4	58
43	Highly Sensitive In Vivo Imaging of Trypanosoma brucei Expressing "Red-Shifted―Luciferase. PLoS Neglected Tropical Diseases, 2013, 7, e2571.	3.0	56
44	In vivo studies on the antileishmanial activity of buparvaquone and its prodrugs. Journal of Antimicrobial Chemotherapy, 2007, 60, 802-810.	3.0	55
45	Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India. Parasites and Vectors, 2016, 9, 25.	2.5	55
46	Anti-malarial efficacy of pyronaridine and artesunate in combination in vitro and in vivo. Acta Tropica, 2008, 105, 222-228.	2.0	52
47	A Replicative <i>In Vitro</i> Assay for Drug Discovery against Leishmania donovani. Antimicrobial Agents and Chemotherapy, 2016, 60, 3524-3532.	3.2	52
48	Leishmaniasis immunopathology—impact on design and use of vaccines, diagnostics and drugs. Seminars in Immunopathology, 2020, 42, 247-264.	6.1	51
49	Drug sensitivity of Leishmania species: some unresolved problems. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2002, 96, S127-S129.	1.8	50
50	Activity of anti-cancer protein kinase inhibitors against Leishmania spp Journal of Antimicrobial Chemotherapy, 2014, 69, 1888-1891.	3.0	50
51	Topical treatment for cutaneous leishmaniasis. Current Opinion in Investigational Drugs, 2002, 3, 538-44.	2.3	50
52	In vitro Activity of Diospyrin and Derivatives against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei brucei. Phytotherapy Research, 1996, 10, 559-562.	5.8	49
53	Susceptibilidad in vitro a hexadecilfosfocolina (miltefosina), nifurtimox y benznidazole de cepas de Trypanosoma cruzi aisladas en Santander, Colombia. Biomedica, 2009, 29, 448.	0.7	46
54	Novel benzoxaborole, nitroimidazole and aminopyrazoles with activity against experimental cutaneous leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 11, 129-138.	3.4	44

#	Article	IF	CITATIONS
55	In vitro antitrypanosomal activity ofMoringa stenopetala leaves and roots. , 1999, 13, 538-539.		43
56	Drug permeation and barrier damage in <i>Leishmania</i> -infected mouse skin. Journal of Antimicrobial Chemotherapy, 2016, 71, 1578-1585.	3.0	42
57	Pharmacological Approaches to Antitrypanosomal Chemotherapy. Memorias Do Instituto Oswaldo Cruz, 1999, 94, 215-220.	1.6	39
58	Topical formulations of miltefosine for cutaneous leishmaniasis in a BALB/c mouse model. Journal of Pharmacy and Pharmacology, 2016, 68, 862-872.	2.4	39
59	Activity of the Novel Immunomodulatory Compound Tucaresol against Experimental Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2000, 44, 1494-1498.	3.2	37
60	Comparative efficacy, toxicity and biodistribution of the liposomal amphotericin B formulations Fungisome® and AmBisome® in murine cutaneous leishmaniasis. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 223-228.	3.4	37
61	Collaborative actions in anti-trypanosomatid chemotherapy with partners from disease endemic areas. Trends in Parasitology, 2010, 26, 395-403.	3.3	35
62	Sequential Chemoimmunotherapy of Experimental Visceral Leishmaniasis Using a Single Low Dose of Liposomal Amphotericin B and a Novel DNA Vaccine Candidate. Antimicrobial Agents and Chemotherapy, 2015, 59, 5819-5823.	3.2	35
63	Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis. Molecules, 2020, 25, 4002.	3.8	35
64	Innovations for the elimination and control of visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2019, 13, e0007616.	3.0	34
65	Marine alkaloids as bioactive agents against protozoal neglected tropical diseases and malaria. Natural Product Reports, 2021, 38, 2214-2235.	10.3	30
66	In-vitro and in-vivo studies on a topical formulation of sitamaquine dihydrochloride for cutaneous leishmaniasis. Journal of Pharmacy and Pharmacology, 2010, 58, 1043-1054.	2.4	29
67	Topical Treatment for Cutaneous Leishmaniasis: Dermato-Pharmacokinetic Lead Optimization of Benzoxaboroles. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	29
68	Synthesis and antileishmanial activity of novel buparvaquone oxime derivatives. Bioorganic and Medicinal Chemistry, 2004, 12, 3497-3502.	3.0	28
69	Relation between Skin Pharmacokinetics and Efficacy in AmBisome Treatment of Murine Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	28
70	Efficacy of Paromomycin-Chloroquine Combination Therapy in Experimental Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	27
71	Pharmacokinetics of antimony in patients treated with sodium stibogluconate for cutaneous leishmaniasis. Pharmaceutical Research, 1995, 12, 113-116.	3.5	26
72	Topical buparvaquone formulations for the treatment of cutaneous leishmaniasis. Journal of Pharmacy and Pharmacology, 2010, 59, 41-49.	2.4	25

#	Article	IF	CITATIONS
73	Pharmacokinetics and Pharmacodynamics of the Nitroimidazole DNDI-0690 in Mouse Models of Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	25
74	Emerging paradigms in anti-infective drug design. Parasitology, 2014, 141, 1-7.	1.5	24
75	Activity of Chitosan and Its Derivatives against Leishmania major and Leishmania mexicana <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	24
76	Pharmacodynamics and Biodistribution of Single-Dose Liposomal Amphotericin B at Different Stages of Experimental Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	23
77	Local Skin Inflammation in Cutaneous Leishmaniasis as a Source of Variable Pharmacokinetics and Therapeutic Efficacy of Liposomal Amphotericin B. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	23
78	Antileishmanial activity of harmaline and other tryptamine derivatives. Phytotherapy Research, 1987, 1, 25-27.	5.8	22
79	Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Research, 2018, 3, 135.	1.8	22
80	Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Research, 2018, 3, 135.	1.8	21
81	A sensitive and reproducible in vivo imaging mouse model for evaluation of drugs against late-stage human African trypanosomiasis. Journal of Antimicrobial Chemotherapy, 2015, 70, 510-517.	3.0	19
82	Antileishmanial Activity, Uptake, and Biodistribution of an Amphotericin B and Poly(α-Glutamic Acid) Complex. Antimicrobial Agents and Chemotherapy, 2013, 57, 4608-4614.	3.2	18
83	Antileishmanial Structure-Activity Relationships of Synthetic Phospholipids: In Vitro and In Vivo Activities of Selected Derivatives. Antimicrobial Agents and Chemotherapy, 2007, 51, 4525-4528.	3.2	17
84	Leishmaniasis – Authors' reply. Lancet, The, 2019, 393, 872-873.	13.7	16
85	<i>Leishmania</i> and other intracellular pathogens: selectivity, drug distribution and PK–PD. Parasitology, 2018, 145, 237-247.	1.5	15
86	Anti-African trypanocidal and antimalarial activity of natural flavonoids, dibenzoylmethanes and synthetic analogues. Journal of Pharmacy and Pharmacology, 2010, 61, 257-266.	2.4	12
87	The Relevance of Susceptibility Tests, Breakpoints, and Markers. , 2013, , 407-429.		12
88	In Vivo and In Vitro Activities and ADME-Tox Profile of a Quinolizidine-Modified 4-Aminoquinoline: A Potent Anti-P. falciparum and Anti-P. vivax Blood-Stage Antimalarial. Molecules, 2017, 22, 2102.	3.8	12
89	Novel 2D and 3D Assays to Determine the Activity of Anti-Leishmanial Drugs. Microorganisms, 2020, 8, 831.	3.6	12
90	Dose-dependent effect and pharmacokinetics of fexinidazole and its metabolites in a mouse model of human African trypanosomiasis. International Journal of Antimicrobial Agents, 2017, 50, 203-209.	2.5	11

#	Article	IF	CITATIONS
91	Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics, 2021, 13, 516.	4.5	11
92	PKDLa drug related phenomenon?. Indian Journal of Medical Research, 2008, 128, 10-1.	1.0	11
93	Development of an in vitro media perfusion model of Leishmania major macrophage infection. PLoS ONE, 2019, 14, e0219985.	2.5	10
94	Antimalarial Chemotherapy: Mechanisms of Action, Resistance and New Directions in Drug Discovery. Drug Discovery Today, 2001, 6, 1151.	6.4	9
95	Pharmacodynamics and cellular accumulation of amphotericin B and miltefosine in Leishmania donovani-infected primary macrophages. Journal of Antimicrobial Chemotherapy, 2018, 73, 1314-1323.	3.0	9
96	Preparation and characterisation of amphotericin B-copolymer complex for the treatment of leishmaniasis. Polymer Chemistry, 2013, 4, 584-591.	3.9	8
97	Neglected tropical diseases in the genomics era: re-evaluating the impact of new drugs and mass drug administration. Genome Biology, 2016, 17, 46.	8.8	8
98	Tissue-specific transcriptomic changes associated with AmBisome® treatment of BALB/c mice with experimental visceral leishmaniasis. Wellcome Open Research, 2019, 4, 198.	1.8	8
99	Pharmacokinetics and pharmacodynamics in the treatment of cutaneous leishmaniasis – challenges and opportunities. RSC Medicinal Chemistry, 2021, 12, 472-482.	3.9	7
100	Antileishmanial and antitrypanosomal drug identification. Emerging Topics in Life Sciences, 2017, 1, 613-620.	2.6	5
101	Chitosan Contribution to Therapeutic and Vaccinal Approaches for the Control of Leishmaniasis. Molecules, 2020, 25, 4123.	3.8	5
102	Cover Picture: Artemisone—A Highly Active Antimalarial Drug of the Artemisinin Class (Angew. Chem.) Tj ETQq0	0.0 rgBT 13.8	/Oyerlock 10
103	Pharmacokinetic / pharmacodynamic relationships of liposomal amphotericin B and miltefosine in experimental visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2021, 15, e0009013.	3.0	4
104	The Challenges of Effective Leishmaniasis Treatment. , 2018, , 193-206.		3
105	Synthesis and antileishmanial activity of novel buparvaquone oxime derivatives. Bioorganic and Medicinal Chemistry, 2004, 12, 3497-3497.	3.0	2
106	Antiprotozoal glutathione derivatives with flagellar membrane binding activity against T. brucei rhodesiense. Bioorganic and Medicinal Chemistry, 2017, 25, 1329-1340.	3.0	2
107	Costs and outcomes of active and passive case detection for visceral leishmaniasis (Kala-Azar) to inform elimination strategies in Bihar, India. PLoS Neglected Tropical Diseases, 2021, 15, e0009129.	3.0	2
108	Drug reformulation for a neglected disease. The NANOHAT project to develop a safer more effective	3.0	2

sleeping sickness drug. PLoS Neglected Tropical Diseases, 2021, 15, e0009276. 108

#	Article	IF	CITATIONS
109	In vitro Activity of Diospyrin and Derivatives against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei brucei. Phytotherapy Research, 1996, 10, 559-562.	5.8	2
110	Antiprotozoal agents. , 2010, , 406-426.		2
111	Biomedicine and Biotechnology: Public Health Impact. BioMed Research International, 2014, 2014, 1-2.	1.9	1
112	Anti-infectives. , 2013, , 429-464.		1