
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/42637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrophobically Directed Aldol Reactions: Polystyrene‣upported <scp>L</scp> â€Proline as a Recyclable Catalyst for Direct Asymmetric Aldol Reactions in the Presence of Water. European Journal of Organic Chemistry, 2007, 2007, 4688-4698.	2.4	150
2	Supported Ionic Liquids. New Recyclable Materials for theL-Proline-Catalyzed Aldol Reaction. Advanced Synthesis and Catalysis, 2006, 348, 82-92.	4.3	143
3	Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aldol reaction. Tetrahedron Letters, 2004, 45, 6113-6116.	1.4	136
4	New Simple Hydrophobic Proline Derivatives as Highly Active and Stereoselective Catalysts for the Direct Asymmetric Aldol Reaction in Aqueous Medium. Advanced Synthesis and Catalysis, 2008, 350, 2747-2760.	4.3	108
5	Functionalized halloysite multivalent glycocluster as a new drug delivery system. Journal of Materials Chemistry B, 2014, 2, 7732-7738.	5.8	77
6	Advances towards Highly Active and Stereoselective Simple and Cheap Prolineâ€Based Organocatalysts. European Journal of Organic Chemistry, 2010, 2010, 5696-5704.	2.4	63
7	Cyclodextrin–calixarene co-polymers as a new class of nanosponges. Polymer Chemistry, 2014, 5, 4499-4510.	3.9	58
8	Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules. RSC Advances, 2016, 6, 87935-87944.	3.6	53
9	Ionic liquid binary mixtures: Promising reaction media for carbohydrate conversion into 5-hydroxymethylfurfural. Applied Catalysis A: General, 2014, 482, 287-293.	4.3	48
10	Studies on the stereoselective selenolactonization, hydroxy and methoxy selenenylation of α- and β-hydroxy acids and esters. Synthesis of δ- and γ-lactones. Tetrahedron, 2003, 59, 2241-2251.	1.9	47
11	Thermodynamics of binding between α- and β-cyclodextrins and some p-nitro-aniline derivatives: reconsidering the enthalpy–entropy compensation effect. Tetrahedron, 2004, 60, 9099-9111.	1.9	45
12	Spectrophotometric study on the thermodynamics of binding of α- and β-cyclodextrin towards some p-nitrobenzene derivativesElectronic supplementary information (ESI) available: Values of inclusion constants at different temperatures. See http://www.rsc.org/suppdata/ob/b3/b300330b/. Organic and Biomolecular Chemistry, 2003, 1, 1584-1590.	2.8	39
13	Short and efficient chemoenzymatic synthesis of goniothalamin. Tetrahedron Letters, 2004, 45, 83-85.	1.4	38
14	Polyaminocyclodextrin nanosponges: synthesis, characterization and pH-responsive sequestration abilities. RSC Advances, 2016, 6, 49941-49953.	3.6	38
15	A quantitative study of substituent effects on oxidative cyclization of some 2â€arylâ€substituted aldehyde thiosemicarbazones induced by ferric chloride and cupric perchlorate. Journal of Heterocyclic Chemistry, 1999, 36, 667-674.	2.6	37
16	Recent Developments in Understanding Biochar's Physical–Chemistry. Agronomy, 2021, 11, 615.	3.0	37
17	A Study of the Influence of Ionic Liquids Properties on the Kemp Elimination Reaction. Chemistry - A European Journal, 2009, 15, 7896-7902.	3.3	36
18	Pre- and post-modification of mixed cyclodextrin-calixarene co-polymers: A route towards tunability. Carbohydrate Polymers, 2017, 157, 1393-1403.	10.2	36

#	Article	IF	CITATIONS
19	Oxidative degradation properties of Co-based catalysts in the presence of ozone. Applied Catalysis B: Environmental, 2007, 75, 281-289.	20.2	34
20	Regiochemical control in the synthesis of tetrahydrofurans by acid-catalyzed cyclization of hydroxy selenides and hydroxy sulfides. Tetrahedron, 1999, 55, 4769-4782.	1.9	31
21	Oxidative cyclization of some aldehyde semicarbazones induced by metallic salts. Journal of Heterocyclic Chemistry, 1993, 30, 765-770.	2.6	29
22	The question of exo vs endo cyclisation. A joint experimental and ab initio study on the stereoselective synthesis of tetrahydrofurans and tetrahydropyrans via seleniranium ions. Tetrahedron, 2001, 57, 1819-1826.	1.9	28
23	Host–guest interactions involving cyclodextrins: useful complementary insights achieved by polarimetry. Tetrahedron, 2007, 63, 9163-9171.	1.9	28
24	Chemical and pharmaceutical evaluation of the relationship between triazole linkers and pore size on cyclodextrin–calixarene nanosponges used as carriers for natural drugs. RSC Advances, 2016, 6, 50858-50866.	3.6	28
25	Hostâ^Guest Interactions between β-Cyclodextrin and the (Z)-Phenylhydrazone of 3-Benzoyl-5-phenyl-1,2,4-oxadiazole:Â The First Kinetic Study of a Ringâ^Ring Interconversion in a "Confined Environment― Journal of Organic Chemistry, 2002, 67, 2948-2953.	3.2	27
26	Binding equilibria between β-cyclodextrin and p-nitro-aniline derivatives: the first systematic study in mixed water–methanol solvent systems. Tetrahedron, 2009, 65, 2037-2042.	1.9	26
27	Evaluation of adsorption ability of cyclodextrin-calixarene nanosponges towards Pb2+ ion in aqueous solution. Carbohydrate Polymers, 2021, 267, 118151.	10.2	25
28	A quantitative study of substituent effects on oxidative cyclization of some 2â€methylsubstituted aldehydes. Thiosemicarbazones induced by ferric chloride. Journal of Heterocyclic Chemistry, 1996, 33, 863-872.	2.6	23
29	Spectrophotometric determination of binding constants between some aminocyclodextrins and nitrobenzene derivatives at various pH values. Tetrahedron, 2002, 58, 6039-6045.	1.9	23
30	Sequential Suzuki/Asymmetric Aldol and Suzuki/Knoevenagel Reactions Under Aqueous Conditions. European Journal of Organic Chemistry, 2012, 2012, 2635-2642.	2.4	23
31	Silver nanoparticles stabilized by a polyaminocyclodextrin as catalysts for the reduction of nitroaromatic compounds. Journal of Molecular Catalysis A, 2015, 408, 250-261.	4.8	23
32	First Evidence of Proline Acting as a Bifunctional Catalyst in the Baylis–Hillman Reaction Between Alkyl Vinyl Ketones and Aryl Aldehydes. European Journal of Organic Chemistry, 2008, 2008, 1589-1596.	2.4	22
33	Stereoselective synthesis of tetrahydrofurans and tetrahydropyrans by acid-catalyzed cyclization of hydroxy selenides and hydroxy sulfides. Tetrahedron, 1999, 55, 14097-14110.	1.9	20
34	Reconsidering TOF calculation in the transformation of epoxides and CO2 into cyclic carbonates. Journal of CO2 Utilization, 2020, 38, 132-140.	6.8	20
35	Spectrophotometric determinations of binding constants between cyclodextrins and aromatic nitrogen substrates at various pH values. Tetrahedron, 2001, 57, 6823-6827.	1.9	19
36	Polarimetry as a useful tool for the determination of binding constants between cyclodextrins and organic guest molecules. Tetrahedron Letters, 2006, 47, 9099-9102.	1.4	19

#	Article	IF	CITATIONS
37	Photosynthesized silver–polyaminocyclodextrin nanocomposites as promising antibacterial agents with improved activity. RSC Advances, 2016, 6, 40090-40099.	3.6	19
38	A joint experimental and ab initio study on the reactivity of several hydroxy selenides. Stereoselective synthesis of cis-disubstituted tetrahydrofurans via seleniranium ions. Tetrahedron, 2001, 57, 6815-6822.	1.9	18
39	Chiral recognition of protected amino acids by means of fluorescent binary complex pyrene/heptakis-(6-amino)-(6-deoxy)-β-cyclodextrin. Tetrahedron, 2006, 62, 4323-4330.	1.9	17
40	Water Dynamics at the Solid–Liquid Interface to Unveil the Textural Features of Synthetic Nanosponges. Journal of Physical Chemistry B, 2020, 124, 1847-1857.	2.6	17
41	A study of the mechanism of the oxidative cyclization of benzaldehyde semicarbazones induced by cupric perchlorate in acetonitrile. Journal of Heterocyclic Chemistry, 1995, 32, 1277-1282.	2.6	16
42	Binding properties of mono-(6-deoxy-6-amino)-β-cyclodextrin towards p-nitroaniline derivatives: a polarimetric study. Tetrahedron, 2009, 65, 10413-10417.	1.9	16
43	Synergistic Activity of Silver Nanoparticles and Polyaminocyclodextrins in Nanosponge Architectures. ChemistrySelect, 2019, 4, 873-879.	1.5	16
44	A spectrofluorimetric study of binary fluorophore–cyclodextrin complexes used as chiral selectors. Tetrahedron, 2005, 61, 4577-4583.	1.9	15
45	Mononuclear rearrangements of heterocycles in water/β-CD: information on the real site of reaction from structural modifications of substrates and from proton concentration dependence of the reactivity. Tetrahedron, 2007, 63, 10260-10268.	1.9	15
46	Microwave-assisted synthesis of novel cyclodextrin–cucurbituril complexes. Supramolecular Chemistry, 2011, 23, 819-828.	1.2	15
47	Synthesis and characterization of new polyamino-cyclodextrin materials. Carbohydrate Research, 2012, 347, 32-39.	2.3	15
48	Cyclodextrinâ€Calixarene Nanosponges as Potential Platforms for pHâ€Dependent Delivery of Tetracycline. ChemistrySelect, 2019, 4, 9743-9747.	1.5	15
49	Fast field cycling NMR relaxometry as a tool to monitor Parmigiano Reggiano cheese ripening. Food Research International, 2021, 139, 109845.	6.2	14
50	The binary pyrene/heptakis-(6-amino-6-deoxy)-β-cyclodextrin complex: a suitable chiral discriminator. Spectrofluorimetric study of the effect of some α-amino acids and esters on the stability of the binary complex. Tetrahedron: Asymmetry, 2002, 13, 1755-1760.	1.8	13
51	Lipase-catalyzed resolution of \hat{l}^2 -hydroxy selenides. Tetrahedron: Asymmetry, 2006, 17, 2713-2721.	1.8	13
52	Hyper-reticulated calixarene polymers: a new example of entirely synthetic nanosponge materials. Beilstein Journal of Organic Chemistry, 2018, 14, 1498-1507.	2.2	13
53	Nuclear Magnetic Resonance with Fast Field-Cycling Setup: A Valid Tool for Soil Quality Investigation. Agronomy, 2020, 10, 1040.	3.0	13
54	Stability and stoichiometry of some binary fluorophore–cyclodextrin complexes. Tetrahedron, 2004, 60. 5309-5314.	1.9	11

#	Article	IF	CITATIONS
55	On the behaviour of the (Z)-phenylhydrazones of some 5-alkyl-3-benzoyl-1,2,4-oxadiazoles in solution and in the gas phase: kinetic and spectrometric evidence in favour of self-assembly. Tetrahedron, 2008, 64, 733-740.	1.9	11
56	Effect of pH Variations on the Properties of Cyclodextrin alixarene Nanosponges. ChemistrySelect, 2019, 4, 6155-6161.	1.5	11
57	Nanosponges for the protection and release of the natural phenolic antioxidants quercetin, curcumin and phenethyl caffeate. Materials Advances, 2020, 1, 2501-2508.	5.4	11
58	Oxidative cyclization of aldehyde thiosemicarbazones induced by potassium ferricyanide and by tris(p-bromophenyl)amino hexachloroantimoniate. A joint experimental and computational study. Arkivoc, 2005, 2005, 114-129.	0.5	11
59	Diastereoselective Synthesis of 2-Phenylselenenyl-1,3-anti-Diols and 2-Phenylselenenyl-1,3-anti-Azido-Alcohols via Hydroxyand Azido-Selenenylation Reactions. Molecules, 2005, 10, 383-393.	3.8	10
60	Binding properties of heptakis-(2,6-di-O-methyl)-β-cyclodextrin and mono-(3,6-anhydro)-β-cyclodextrin: a polarimetric study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 121-127.	1.6	9
61	Binding abilities of polyaminocyclodextrins: polarimetric investigations and biological assays. Beilstein Journal of Organic Chemistry, 2017, 13, 2751-2763.	2.2	9
62	Binding abilities of a chiral calix[4]resorcinarene: a polarimetric investigation on a complex case of study. Beilstein Journal of Organic Chemistry, 2017, 13, 2698-2709.	2.2	9
63	Polyaminoazide mixtures for the synthesis of pH-responsive calixarene nanosponges. Beilstein Journal of Organic Chemistry, 2019, 15, 633-641.	2.2	9
64	Straightforward preparation of highly loaded MWCNT–polyamine hybrids and their application in catalysis. Nanoscale Advances, 2020, 2, 4199-4211.	4.6	8
65	Changes in Physicochemical Properties of Biochar after Addition to Soil. Agriculture (Switzerland), 2022, 12, 320.	3.1	8
66	Diastereoselective Synthesis of Substituted 2-Phenyltetrahydropyrans as Useful Precursors of Aryl C-Glycosides via Selenoetherification. Heterocycles, 2004, 63, 681.	0.7	7
67	Heuristic Algorithm for the Analysis of Fast Field Cycling (FFC) NMR Dispersion Curves. Analytical Chemistry, 2021, 93, 8553-8558.	6.5	6
68	Differentiation among dairy products by combination of fast field cycling NMR relaxometry data and chemometrics. Magnetic Resonance in Chemistry, 2022, 60, 369-385.	1.9	6
69	Protonation of Some 5-Substituted Di(2-thienyl) Ketones in Sulfuric Acid. A Comparison with Other 2-Thienyl and Phenyl Ketones. Collection of Czechoslovak Chemical Communications, 1999, 64, 1893-1901.	1.0	5
70	Binding abilities of new cyclodextrin–cucurbituril supramolecular hosts. Supramolecular Chemistry, 2015, 27, 233-243.	1.2	4
71	Stereoselective Synthesis of Substituted Tetrahydropyran Rings via 6-exo and 6-endo Selenoetherification. Heterocycles, 2002, 57, 293.	0.7	4
72	NMR analysis of restricted internal rotation in 2â€substitutedâ€2,3â€dihydroâ€3â€ <i>o</i> â€tolyl(chlorophenyl)â€4(1 <i>H</i>)â€quinazolinones. Journal of Heterocyclic Chemistry, 1996, 33, 1067-1071.	2.6	2

#	Article	IF	CITATIONS
73	Supported Ionic Liquid Asymmetric Catalysis. A New Method for Chiral Catalysts Recycling. The Case of Proline-Catalyzed Aldol Reaction ChemInform, 2004, 35, no.	0.0	2
74	Lipase-catalyzed resolution of anti-6-substituted 1,3-dioxepan-5-ols. Tetrahedron: Asymmetry, 2006, 17, 3128-3134.	1.8	2
75	Convenient Photochemical Synthesis of Silverâ€Polyaminocyclodextrin Nanocomposites: The Role of the Light Source from a Mechanistic Viewpoint. ChemistrySelect, 2018, 3, 3048-3055.	1.5	2
76	Unexpected Substituent Effects in the Iso-Heterocyclic Boulton–Katritzky Rearrangement of 3-Aroylamino-5-methyl-1,2,4-oxadiazoles: A Mechanistic Study. Journal of Physical Chemistry A, 2019, 123, 10004-10010.	2.5	2
77	Protonation equilibria of some ortho-substituted and annelated aryl and thiophen-2-yl and -3-yl ketones. Perkin Transactions II RSC, 2001, , 2043-2046.	1.1	1
78	Studies on the Stereoselective Selenolactonization, Hydroxy and Methoxy Selenenylation of α- and β-Hydroxy Acids and Esters. Synthesis of Î^- and γ-Lactones ChemInform, 2003, 34, no.	0.0	0
79	The effect of some amines and alcohols on the organized structure of [bmim][BF4] investigated by 1H NMR spectroscopy. Arkivoc, 2009, 2009, 30-46.	0.5	Ο