Adrian M T Linacre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/426251/publications.pdf

Version: 2024-02-01

191 papers 4,517 citations

32 h-index 138484 58 g-index

201 all docs

 $\begin{array}{c} 201 \\ \\ \text{docs citations} \end{array}$

times ranked

201

3123 citing authors

#	Article	IF	CITATIONS
1	Cytochrome b gene for species identification of the conservation animals. Forensic Science International, 2001, 122, 7-18.	2.2	180
2	ISFG: Recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Science International: Genetics, 2011, 5, 501-505.	3.1	175
3	Selective Detection of Deoxyribonucleic Acid at Ultralow Concentrations by SERRS. Analytical Chemistry, 1997, 69, 4703-4707.	6.5	172
4	Reconstructing Mammalian Phylogenies: A Detailed Comparison of the Cytochrome b and Cytochrome Oxidase Subunit I Mitochondrial Genes. PLoS ONE, 2010, 5, e14156.	2.5	152
5	Update of the guidelines for the publication of genetic population data. Forensic Science International: Genetics, 2014, 10, A1-A2.	3.1	144
6	New guidelines for the publication of genetic population data. Forensic Science International: Genetics, 2013, 7, 217-220.	3.1	142
7	Revised guidelines for the publication of genetic population data. Forensic Science International: Genetics, 2017, 30, 160-163.	3.1	135
8	An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics, 2011, 2, 2.	3.3	116
9	Wildlife forensic science: A review of genetic geographic origin assignment. Forensic Science International: Genetics, 2015, 18, 152-159.	3.1	113
10	Shedding light on shedders. Forensic Science International: Genetics, 2018, 36, 20-25.	3.1	113
11	Generation of DNA profiles from fabrics without DNA extraction. Forensic Science International: Genetics, 2010, 4, 137-141.	3.1	94
12	A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome <i>b</i> gene. Electrophoresis, 2008, 29, 340-347.	2.4	88
13	Current and future directions of DNA in wildlife forensic science. Forensic Science International: Genetics, 2014, 10, 1-11.	3.1	86
14	Species identification of rhinoceros horns using the cytochrome b gene. Forensic Science International, 2003, 136, 1-11.	2.2	85
15	A novel strategy for avian species and gender identification using the CHD gene. Molecular and Cellular Probes, 2010, 24, 27-31.	2.1	77
16	Forensic Applications of Infrared Imaging for the Detection and Recording of Latent Evidence. Journal of Forensic Sciences, 2007, 52, 1148-1150.	1.6	74
17	Toehold-Mediated Nonenzymatic DNA Strand Displacement As a Platform for DNA Genotyping. Journal of the American Chemical Society, 2013, 135, 5612-5619.	13.7	64
18	Detection and identification of cannabis by DNA. Forensic Science International, 1998, 91, 71-76.	2.2	63

#	Article	IF	CITATIONS
19	A highly polymorphic STR locus in Cannabis sativa. Forensic Science International, 2003, 131, 53-58.	2.2	62
20	Properties of nucleic acid staining dyes used in gel electrophoresis. Electrophoresis, 2015, 36, 941-944.	2.4	61
21	Ivory identification by DNA profiling of cytochrome b gene. International Journal of Legal Medicine, 2009, 123, 117-121.	2.2	51
22	Detection of latent DNA. Forensic Science International: Genetics, 2018, 37, 95-101.	3.1	51
23	DNA profiles from fingermarks. BioTechniques, 2014, 57, 259-266.	1.8	50
24	DNA typing in wildlife crime: recent developments in species identification. Forensic Science, Medicine, and Pathology, 2010, 6, 195-206.	1.4	48
25	Direct PCR Improves the Recovery of DNA from Various Substrates. Journal of Forensic Sciences, 2015, 60, 1558-1562.	1.6	48
26	A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures. Forensic Science International: Genetics, 2008, 2, 249-256.	3.1	46
27	DNA profiles generated from a range of touched sample types. Forensic Science International: Genetics, 2018, 36, 13-19.	3.1	45
28	Successful direct amplification of nuclear markers from a single hair follicle. Forensic Science, Medicine, and Pathology, 2013, 9, 238-243.	1.4	40
29	Random Whole Metagenomic Sequencing for Forensic Discrimination of Soils. PLoS ONE, 2014, 9, e104996.	2.5	40
30	Forensic animal DNA analysis using economical two-step direct PCR. Forensic Science, Medicine, and Pathology, 2014, 10, 29-38.	1.4	39
31	The use of mitochondrial DNA and short tandem repeat typing in the identification of air crash victims. Electrophoresis, 1999, 20, 1707-1711.	2.4	35
32	Visualising latent DNA on swabs. Forensic Science International, 2018, 291, 115-123.	2.2	35
33	Genetic profiling from challenging samples: Direct PCR of touch DNA. Forensic Science International: Genetics Supplement Series, 2013, 4, e224-e225.	0.3	34
34	Racing pigeon identification using STR and chromoâ€helicase DNA binding gene markers. Electrophoresis, 2007, 28, 4274-4281.	2.4	33
35	Establishing the pangolin mitochondrial D-loop sequences from the confiscated scales. Forensic Science International: Genetics, 2011, 5, 303-307.	3.1	33
36	DNA profiling of Shahtoosh. Electrophoresis, 2006, 27, 3359-3362.	2.4	32

#	Article	IF	CITATIONS
37	An internationally standardized species identification test for use on suspected seized rhinoceros horn in the illegal wildlife trade. Forensic Science International: Genetics, 2018, 32, 33-39.	3.1	32
38	The development and validation of a single SNaPshot multiplex for tiger species and subspecies identificationâ€"Implications for forensic purposes. Forensic Science International: Genetics, 2012, 6, 250-257.	3.1	31
39	Application of direct PCR in forensic casework. Forensic Science International: Genetics Supplement Series, 2013, 4, e47-e48.	0.3	31
40	How many cells are required for successful DNA profiling?. Forensic Science International: Genetics, 2021, 51, 102453.	3.1	31
41	Species Identification of Kachuga tecta Using the Cytochrome b Gene. Journal of Forensic Sciences, 2006, 51, 52-56.	1.6	30
42	Species identification using sequences of the trnL intron and the trnL-trnF IGS of chloroplast genome among popular plants in Taiwan. Forensic Science International, 2006, 164, 193-200.	2.2	30
43	DNA profiles from fingernails using direct PCR. Forensic Science, Medicine, and Pathology, 2015, 11, 99-103.	1.4	30
44	Species identification using the cytochrome b gene of commercial turtle shells. Forensic Science International: Genetics, 2009, 3, 67-73.	3.1	29
45	Forensic ancestry analysis with two capillary electrophoresis ancestry informative marker (AIM) panels: Results of a collaborative EDNAP exercise. Forensic Science International: Genetics, 2015, 19, 56-67.	3.1	27
46	A novel strategy for avian species identification by cytochrome <i>b</i> gene. Electrophoresis, 2008, 29, 2413-2418.	2.4	26
47	Cytochrome b or cytochrome c oxidase subunit I for mammalian species identification—An answer to the debate. Forensic Science International: Genetics Supplement Series, 2009, 2, 306-307.	0.3	26
48	A rapid screening method using DNA binding dyes to determine whether hair follicles have sufficient DNA for successful profiling. Forensic Science International, 2016, 262, 190-195.	2.2	26
49	The detection and identification of saliva in forensic samples by RT-LAMP. Forensic Science, Medicine, and Pathology, 2018, 14, 469-477.	1.4	26
50	Finding DNA: Using fluorescent in situ detection. Forensic Science International: Genetics Supplement Series, 2015, 5, e501-e502.	0.3	25
51	Animal Forensic Genetics. Genes, 2021, 12, 515.	2.4	25
52	pSTR Finder: a rapid method to discover polymorphic short tandem repeat markers from whole-genome sequences. Investigative Genetics, 2015, 6, 10.	3.3	24
53	Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA. Scientific Reports, 2015, 5, 8721.	3.3	24
54	Enhancement of fingermarks and visualizing DNA. Forensic Science International, 2019, 300, 99-105.	2.2	24

#	Article	IF	Citations
55	Collaborative EDNAP exercise on the IrisPlex system for DNA-based prediction of human eye colour. Forensic Science International: Genetics, 2014, 11, 241-251.	3.1	23
56	DNA profiles from clothing fibers using direct PCR. Forensic Science, Medicine, and Pathology, 2016, 12, 331-335.	1.4	23
57	Species Determination: The Role and Use of the Cytochrome b Gene. Methods in Molecular Biology, 2016, 1420, 287-296.	0.9	23
58	"Bottomâ€up" <i>in situ</i> proteomic differentiation of human and nonâ€human haemoglobins for forensic purposes by matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 1927-1937.	1.5	23
59	Haplotype frequencies of nine Y-chromosome STR loci in the Taiwanese Han population. International Journal of Legal Medicine, 2002, 116, 179-183.	2.2	22
60	Novel identification of biofluids using a multiplex methylation-specific PCR combined with single-base extension system. Forensic Science, Medicine, and Pathology, 2016, 12, 128-138.	1.4	22
61	Identification of members of the genera Panaeolus and Psilocybe by a DNA test. Forensic Science International, 2000, 112, 123-133.	2.2	21
62	Bidens identification using the noncoding regions of chloroplast genome and nuclear ribosomal DNA. Forensic Science International: Genetics, 2008, 2, 35-40.	3.1	21
63	Diatomological investigation in sphenoid sinus fluid and lung tissue from cases of suspected drowning. Forensic Science International, 2014, 244, 111-115.	2.2	21
64	Ethical publication of research on genetics and genomics of biological material: guidelines and recommendations. Forensic Science International: Genetics, 2020, 48, 102299.	3.1	21
65	Cannabis seed identification by chloroplast and nuclear DNA. Forensic Science International, 2006, 158, 250-251.	2.2	20
66	A novel application of real-time RT-LAMP for body fluid identification: using HBB detection as the model. Forensic Science, Medicine, and Pathology, 2015, 11, 208-215.	1.4	20
67	Direct identification of forensic body fluids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. International Journal of Mass Spectrometry, 2016, 397-398, 18-26.	1.5	20
68	Novel identification of biofluids using a multiplex methylation sensitive restriction enzyme-PCR system. Forensic Science International: Genetics, 2016, 25, 157-165.	3.1	19
69	Systematic evaluation of sensitivity and specificity of sibship determination by using 15 STR loci. Journal of Clinical Forensic and Legal Medicine, 2008, 15, 329-334.	1.0	18
70	The complete mitochondrial genome analysis of the tiger (Panthera tigris). Molecular Biology Reports, 2012, 39, 5745-5754.	2.3	18
71	Establishing a DNA identification system for pigs (Sus scrofa) using a multiplex STR amplification. Forensic Science International: Genetics, 2014, 9, 12-19.	3.1	18
72	Typing DNA profiles from previously enhanced fingerprints using direct PCR. Forensic Science International: Genetics, 2017, 29, 276-282.	3.1	18

#	Article	lF	Citations
73	Optimising direct PCR from anagen hair samples. Forensic Science International: Genetics Supplement Series, 2013, 4, e109-e110.	0.3	17
74	OzPythonPlex: An optimised forensic STR multiplex assay set for the Australasian carpet python (Morelia spilota). Forensic Science International: Genetics, 2018, 34, 231-248.	3.1	17
75	Identification of hallucinogenic fungi from the generaPsilocybe andPanaeolus by amplified fragment length polymorphism. Electrophoresis, 2000, 21, 1484-1487.	2.4	16
76	Mutation rates of 15 X chromosomal short tandem repeat markers. International Journal of Legal Medicine, 2014, 128, 579-587.	2.2	16
77	Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing. Electrophoresis, 2015, 36, 2561-2568.	2.4	16
78	The screening of 13 short tandem repeat loci in the Chinese population. Forensic Science International, 1997, 87, 137-144.	2.2	15
79	Identification multiplex assay of 19 terrestrial mammal species present in New Zealand. Electrophoresis, 2013, 34, 3370-3376.	2.4	15
80	An assessment of tape-lifts. Forensic Science International: Genetics, 2020, 47, 102292.	3.1	15
81	The strategies to DVI challenges in Typhoon Morakot. International Journal of Legal Medicine, 2011, 125, 637-641.	2.2	14
82	Widespread hybridization in the introduced hog deer population of Victoria, Australia, and its implications for conservation. Ecology and Evolution, 2019, 9, 10828-10842.	1.9	14
83	Direct PCR: A review of use and limitations. Science and Justice - Journal of the Forensic Science Society, 2020, 60, 303-310.	2.1	14
84	Detection of DNA within fingermarks. Forensic Science International: Genetics Supplement Series, 2013, 4, e290-e291.	0.3	13
85	Successful direct STR amplification of hair follicles after nuclear staining. Forensic Science International: Genetics Supplement Series, 2015, 5, e65-e66.	0.3	13
86	The Influence of Selected Fingerprint Enhancement Techniques on Forensic <scp>DNA</scp> Typing of Epithelial Cells Deposited on Porous Surfaces. Journal of Forensic Sciences, 2016, 61, S221-5.	1.6	13
87	Detection of cellular material in lip-prints. Forensic Science, Medicine, and Pathology, 2019, 15, 362-368.	1.4	13
88	Establishing the rDNA IGS Structure of Cannabis sativa. Journal of Forensic Sciences, 2004, 49, 1-4.	1.6	13
89	Allele frequency distribution of twelve X-chromosomal short tandem repeat markers in four U.S. population groups. Forensic Science International: Genetics Supplement Series, 2011, 3, e481-e483.	0.3	12
90	A complementary forensic †proteo-genomic' approach for the direct identification of biological fluid traces under fingernails. Analytical and Bioanalytical Chemistry, 2018, 410, 6165-6175.	3.7	12

#	Article	IF	Citations
91	Speed of accumulation of DNA in a fingermark. Australian Journal of Forensic Sciences, 2020, 52, 293-302.	1.2	12
92	Rapid identification of the ABO genotypes by their single-stand conformation polymorphism. Electrophoresis, 2000, 21, 537-540.	2.4	11
93	Increasing the confidence in half-sibship determination based upon 15 STR loci. Journal of Clinical Forensic and Legal Medicine, 2008, 15, 373-377.	1.0	11
94	DNA profiles from fingermarks: A mock case study. Forensic Science International: Genetics Supplement Series, 2015, 5, e154-e155.	0.3	11
95	Optimization of Diamond Nucleic Acid Dye for quantitative PCR. BioTechniques, 2016, 61, 183-189.	1.8	11
96	A mass spectrometry-based forensic toolbox for imaging and detecting biological fluid evidence in finger marks and fingernail scrapings. International Journal of Legal Medicine, 2017, 131, 1413-1422.	2.2	11
97	Visualising latent DNA on tapes. Forensic Science International: Genetics Supplement Series, 2019, 7, 237-239.	0.3	11
98	Use of a Spray Device to Locate Touch DNA on Casework Samples. Journal of Forensic Sciences, 2020, 65, 1280-1288.	1.6	11
99	Characterization of the polymorphic repeat sequence within the rDNA IGS of Cannabis sativa. Forensic Science International, 2005, 152, 23-28.	2.2	10
100	The use of mitochondrial DNA genes to identify closely related avian species. Forensic Science International: Genetics Supplement Series, 2009, 2, 275-277.	0.3	10
101	The risk of false inclusion of a relative in parentage testing $\hat{a}\in$ " an in silico population study. Croatian Medical Journal, 2013, 54, 257-262.	0.7	10
102	Population genetic data for 15 X chromosomal short tandem repeat markers in three U.S. populations. Forensic Science International: Genetics, 2014, 8, 64-67.	3.1	10
103	A novel real time PCR assay using melt curve analysis for ivory identification. Forensic Science International, 2016, 267, 210-217.	2.2	10
104	Species Identification Using DNA Loci. International Forensic Science and Investigation Series, 2009, , 61-94.	0.0	10
105	One-step isolation of plant DNA suitable for PCR amplification. Plant Molecular Biology Reporter, 2001, 19, 367-371.	1.8	9
106	Species identification of human and deer from mixed biological material. Forensic Science International, 2007, 169, 278-279.	2,2	9
107	lvory species identification using electrophoresisâ€based techniques. Electrophoresis, 2016, 37, 3068-3075.	2.4	9
108	SEQ Mapper: A DNA sequence searching tool for massively parallel sequencing data. Forensic Science International: Genetics, 2017, 26, 66-69.	3.1	9

#	Article	IF	Citations
109	Successful STR amplification of post-blast IED samples by fluorescent visualisation and direct PCR. Forensic Science International: Genetics, 2020, 46, 102256.	3.1	9
110	DNA on drugs! A preliminary investigation of DNA deposition during the handling of illicit drug capsules. Forensic Science International: Genetics, 2021, 54, 102559.	3.1	9
111	DNA deposited in whole thumbprints: A reproducibility study. Forensic Science International: Genetics, 2022, 58, 102683.	3.1	9
112	Identifying endangered species from degraded mixtures at low levels. Forensic Science International: Genetics Supplement Series, 2009, 2, 304-305.	0.3	8
113	Evaluating the performance of whole genome amplification for use in low template DNA typing. Medicine, Science and the Law, 2012, 52, 223-228.	1.0	8
114	Capillary Electrophoresis of mtDNA Cytochrome b Gene Sequences for Animal Species Identification. Methods in Molecular Biology, 2012, 830, 321-329.	0.9	8
115	Low-cost direct PCR for aged and processed wildlife sample analysis. Forensic Science International: Genetics Supplement Series, 2013, 4, e71-e72.	0.3	8
116	Towards a research culture in the forensic sciences. Australian Journal of Forensic Sciences, 2013, 45, 381-388.	1.2	8
117	Current Issues with the Investigation of Wildlife Crime in Australia: Problems and Opportunities for Improvement. Journal of International Wildlife Law and Policy, 2015, 18, 244-263.	0.5	8
118	Locating DNA within fingermarks using fluorescent in situ detection; a collaboration between ESR and Flinders University. Australian Journal of Forensic Sciences, 2019, 51, S76-S80.	1.2	8
119	Detection of latent DNA on tape-lifts using fluorescent in situ detection. Australian Journal of Forensic Sciences, 2019, 51, 455-465.	1.2	8
120	Detecting latent DNA in wildlife forensic science investigations. Science and Justice - Journal of the Forensic Science Society, 2020, 60, 358-362.	2.1	8
121	Evaluation of a fluorescent dye to visualize touch DNA on various substrates. Journal of Forensic Sciences, 2021, 66, 1435-1442.	1.6	8
122	13 STR loci frequency data from a Scottish population. Forensic Science International, 2001, 116, 187-188.	2.2	7
123	The UK National DNA Database. Lancet, The, 2003, 361, 1841-1842.	13.7	7
124	Identification of Protected Avian Species Using a Single Feather Barb* ^{,â€} . Journal of Forensic Sciences, 2012, 57, 1574-1577.	1.6	7
125	Duration of in situ fluorescent signals within hairs follicles. Forensic Science International: Genetics Supplement Series, 2015, 5, e175-e176.	0.3	7
126	Molecular identification of python species: Development and validation of a novel assay for forensic investigations. Forensic Science International: Genetics, 2015, 16, 64-70.	3.1	7

#	Article	IF	Citations
127	The benefits and limitations of expanded Y-chromosome short tandem repeat (Y-STR) loci. Forensic Science International: Genetics Supplement Series, 2015, 5, e28-e30.	0.3	7
128	Detection of cellular material within handprints. Forensic Science International: Genetics Supplement Series, 2019, 7, 194-196.	0.3	7
129	Sequence analysis of STR polymorphisms at locus ACTBP2 in the Taiwanese population. Forensic Science International, 2002, 130, 112-121.	2.2	6
130	Successful DNA typing of a drug positive urine sample from a race horse. Forensic Science International, 2007, 173, 85-86.	2,2	6
131	A method to identify a large number of mammalian species in the UK from trace samples and mixtures without the use of sequencing. Forensic Science International: Genetics Supplement Series, 2008, 1, 625-627.	0.3	6
132	Tiger species identification based on molecular approach. Forensic Science International: Genetics Supplement Series, 2009, 2, 310-312.	0.3	6
133	A novel strategy for sibship determination in trio sibling model. Croatian Medical Journal, 2012, 53, 336-342.	0.7	6
134	The end of bad hair days. Forensic Science International: Genetics Supplement Series, 2015, 5, e146-e148.	0.3	6
135	Investigation of length heteroplasmy in mitochondrial DNA control region by massively parallel sequencing. Forensic Science International: Genetics, 2017, 30, 127-133.	3.1	6
136	Integrating spectrophotometric and XRD analyses in the investigation of burned dental remains. Forensic Science International, 2020, 310, 110236.	2.2	6
137	DNA on drugs (part 2): An extended study into the transfer and persistence of DNA onto illicit drug capsules using realistic scenarios. Forensic Science International: Genetics, 2022, 60, 102740.	3.1	6
138	The use of DNA from non-human sources. Forensic Science International: Genetics Supplement Series, 2008, 1, 605-606.	0.3	5
139	On the trial of tigers–tracking tiger in Traditional East Asian Medicine. Forensic Science International: Genetics Supplement Series, 2008, 1, 603-604.	0.3	5
140	Establishing the mitochondrial DNA Dâ€koop structure of Columba livia. Electrophoresis, 2009, 30, 3058-3062.	2.4	5
141	Forensic analysis of soils using single arbitrarily primed amplification and high throughput sequencing. Forensic Science International: Genetics Supplement Series, 2013, 4, e39-e40.	0.3	5
142	Direct PCR of fired shotgun casings: a South Australian evaluation. Australian Journal of Forensic Sciences, 2022, 54, 358-364.	1.2	5
143	Identification of spermatozoa using a novel 3-plex MSRE-PCR assay for forensic examination of sexual assaults. International Journal of Legal Medicine, 2020, 134, 1991-2004.	2.2	5
144	Wildlife crime in Australia. Emerging Topics in Life Sciences, 2021, 5, 487-494.	2.6	5

#	Article	IF	Citations
145	Y-SNP Haplogroup Hierarchy Finder: a web tool for Y-SNP haplogroup assignment. Journal of Human Genetics, 2022, , .	2.3	5
146	ABO genotyping by single strand conformation polymorphism - using CE. Electrophoresis, 2009, 30, 2544-2548.	2.4	4
147	Forensic DNA profiling: state of the art. Research and Reports in Forensic Medical Science, 0, , 25.	0.0	4
148	Sequence selective capture, release and analysis of DNA using a magnetic microbead-assisted toehold-mediated DNA strand displacement reaction. Analyst, The, 2014, 139, 3548-3551.	3.5	4
149	Successful direct amplification of nuclear markers from single dog hairs using DogFiler multiplex. Electrophoresis, 2015, 36, 2082-2085.	2.4	4
150	DNA profiles from matchsticks. Australian Journal of Forensic Sciences, 2019, 51, S18-S22.	1.2	4
151	Forensic validation of a panel of 12 SNPs for identification of Mongolian wolf and dog. Scientific Reports, 2020, 10, 13249.	3.3	4
152	Analysis of rapid HIT application to touch DNA samples. Journal of Forensic Sciences, 2022, , .	1.6	4
153	A survey of the effects of common illicit drugs on forensic DNA analysis. Forensic Science International, 2022, 336, 111314.	2.2	4
154	Review of low template DNA typing. Forensic Science International: Genetics Supplement Series, 2009, 2, 549-550.	0.3	3
155	Characterisation of novel and rare Y-chromosome short tandem repeat alleles in self-declared South Australian Aboriginal database. International Journal of Legal Medicine, 2014, 128, 27-31.	2.2	3
156	Investigation into length heteroplasmy in the mitochondrial DNA control region after treatment with bisulfite. Journal of the Formosan Medical Association, 2016, 115, 284-287.	1.7	3
157	Establishment of 11 linked X-STR loci within 1.1 Mb to assist with kinship testing. International Journal of Legal Medicine, 2018, 132, 967-973.	2.2	3
158	What's on the bag? The DNA composition of evidence bags pre- and post-exhibit examination. Forensic Science International: Genetics, 2022, 57, 102652.	3.1	3
159	Evaluation of the polymorphic Dâ€loop of <i>Columba livia </i> in forensic applications. Electrophoresis, 2010, 31, 3889-3894.	2.4	2
160	Assigning confidence to sequence comparisons for species identification: A detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. Forensic Science International: Genetics Supplement Series, 2011, 3, e246-e247.	0.3	2
161	Profiling pythons to combat common illegal wildlife activities. Forensic Science International: Genetics Supplement Series, 2013, 4, e31-e32.	0.3	2
162	Multiplex-direct PCR assay for foodborne pathogen identification: An application in forensic investigation. Forensic Science International: Genetics Supplement Series, 2013, 4, e103-e104.	0.3	2

#	Article	IF	CITATIONS
163	Species identification of protected carpet pythons suitable for degraded forensic samples. Forensic Science, Medicine, and Pathology, 2014, 10, 295-305.	1.4	2
164	The complete mitochondrial genome of <i>Axis porcinus</i> (Mammalia: Cervidae) from Victoria, Australia, using MiSeq sequencing. Mitochondrial DNA Part B: Resources, 2017, 2, 453-454.	0.4	2
165	Getting more for less: can forensic tools for Australian wildlife enforcement support international compliance efforts?. Australian Journal of Forensic Sciences, 2019, 51, 407-416.	1.2	2
166	A novel approach for rapid cell assessment to estimate DNA recovery from human bone tissue. Forensic Science, Medicine, and Pathology, 2021, 17, 649-659.	1.4	2
167	Comparison of six commercially available STR kits for their application to touch DNA using direct PCR. Forensic Science International: Reports, 2021, 4, 100243.	0.8	2
168	Recovering trace reptile DNA from the illegal wildlife trade. Forensic Science International Animals and Environments, 2022, 2, 100040.	0.8	2
169	DNA profiling from human bone cells in the absence of decalcification and DNA extraction. Journal of Forensic Sciences, 2022, , .	1.6	2
170	A novel nomenclature for the hypervariable short tandem repeat APOAI1. Electrophoresis, 2001, 22, 1090-1094.	2.4	1
171	Species Determination: The Role and Use of the Cytochrome <i>b</i> Gene., 2005,, 045-052.		1
172	Quantification of trace amounts of human and non-human mitochondrial DNA (mtDNA) using SYBR Green and real time PCR. Forensic Science International: Genetics Supplement Series, 2008, 1, 71-73.	0.3	1
173	Where does this tiger come from?â€"A robust molecular technique for simultaneous identification of endangered species and subspecies. Forensic Science International: Genetics Supplement Series, 2011, 3, e532-e533.	0.3	1
174	A new assay for identifying endangered species in Traditional East Asian Medicine. Forensic Science International: Genetics Supplement Series, 2011, 3, e232-e233.	0.3	1
175	A gonosomal marker multiplex to aid in mixture interpretation. Forensic Science International: Genetics Supplement Series, 2013, 4, e184-e185.	0.3	1
176	Developmental validation of 15 X chromosomal short tandem repeat markers. Forensic Science International: Genetics Supplement Series, 2013, 4, e142-e143.	0.3	1
177	Visualising DNA transfer: Latent DNA detection using Diamond Dye. Forensic Science International: Genetics Supplement Series, 2019, 7, 229-231.	0.3	1
178	On the suppression of Forensic Science International: Genetics from the 2019 Journal Citations Report. Forensic Science International: Genetics, 2020, 48, 102357.	3.1	1
179	Discrimination of highly degraded, aged Asian and African elephant ivory using denaturing gradient gel electrophoresis (DGGE). International Journal of Legal Medicine, 2021, 135, 107-115.	2.2	1
180	DNA transfer between evidence bags: is it a means for incidental contamination of items?. Australian Journal of Forensic Sciences, 2021, 53, 256-270.	1.2	1

#	Article	IF	CITATIONS
181	Population inference based on mitochondrial DNA control region data by the nearest neighbors algorithm. International Journal of Legal Medicine, 2021, 135, 1191-1199.	2.2	1
182	The development of a tool to predict temperature-exposure of incinerated teeth using colourimetric and hydroxyapatite crystal size data. International Journal of Legal Medicine, 2021, 135, 2045-2053.	2.2	1
183	A novel co-amplification system for simultaneous amplification of 23 Y-STR and identification of spermatozoa. International Journal of Legal Medicine, 2022, 136, 73-84.	2.2	1
184	Development of an STR panel for a non-native population of an endangered species. Molecular Biology Reports, 2022, 49, 839-845.	2.3	1
185	The influences of dusty environments on the STR typing success of post-detonation touch DNA samples. Forensic Science International: Genetics, 2022, 57, 102651.	3.1	1
186	Exploring tapelifts as a method for dual workflow STR amplification. Forensic Science International: Genetics, 2022, 57, 102653.	3.1	1
187	Amelogenin locus typing using toehold-assisted fluorescent DNA melting analysis. Forensic Science International: Genetics Supplement Series, 2013, 4, e119-e120.	0.3	O
188	Wildlife Forensic Science. Security Science and Technology, 2016, , 449-471.	0.5	0
189	Freeze-drying improves DNA yield from teeth. Forensic Science International, 2021, 326, 110938.	2.2	O
190	Selective Detection of Deoxyribonucleic Acid at Ultra Low Concentrations By Serrs., 1999,, 541-544.		0
191	Spermatozoa identification by the 3-plex MSRE-PCR assay: a collaborative exercise. International Journal of Legal Medicine, 2021, , 1.	2.2	O