
Kristin Ytterstad Pettersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4261573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Asymptotic Tracking for Marine Vehicles Using Adaptive Hybrid Feedback. IEEE Transactions on Automatic Control, 2023, 68, 1584-1599.	5.7	1
2	The generalized superâ€ŧwisting algorithm with adaptive gains. International Journal of Robust and Nonlinear Control, 2022, 32, 7240-7270.	3.7	5
3	Tracking Control of an Articulated Intervention Autonomous Underwater Vehicle in 6DOF Using Generalized Super-twisting: Theory and Experiments. IEEE Transactions on Control Systems Technology, 2021, 29, 353-369.	5.2	27
4	Underactuated Marine Control Systems. , 2021, , 2373-2377.		0
5	Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results. Ocean Engineering, 2021, 222, 108480.	4.3	33
6	Editorial: Advanced Control Methods in Marine Robotics Applications. Frontiers in Robotics and AI, 2021, 8, 654581.	3.2	0
7	Path Planning for UGVs Based on Traversability Hybrid A*. IEEE Robotics and Automation Letters, 2021, 6, 1216-1223.	5.1	27
8	Formation path following control of underactuated USVs. European Journal of Control, 2021, 62, 171-184.	2.6	12
9	Autonomous ROV Inspections of Aquaculture Net Pens Using DVL. IEEE Journal of Oceanic Engineering, 2021, , 1-19.	3.8	15
10	Reactive Collision Avoidance for Nonholonomic Vehicles in Dynamic Environments with Obstacles of Arbitrary Shape. IFAC-PapersOnLine, 2021, 54, 155-160.	0.9	5
11	Reactive Collision Avoidance for Underactuated Surface Vehicles using the Collision Cone Concept. , 2021, , .		2
12	Collision Avoidance for Underactuated Marine Vehicles Using the Constant Avoidance Angle Algorithm. IEEE Transactions on Control Systems Technology, 2020, 28, 951-966.	5.2	32
13	Collision Avoidance using Mixed H2/Hâ^ž Control for an Articulated Intervention-AUV. , 2020, , .		Ο
14	Combined kinematic and dynamic control of vehicle-manipulator systems. Mechatronics, 2020, 69, 102380.	3.3	15
15	Set-based collision avoidance applications to robotic systems. Mechatronics, 2020, 69, 102399.	3.3	9
16	A 3D reactive collision avoidance algorithm for underactuated underwater vehicles. Journal of Field Robotics, 2020, 37, 1094-1122.	6.0	11
17	Economic model predictive control for obstacle-aided snake robot locomotion. IFAC-PapersOnLine, 2020, 53, 9702-9708.	0.9	4
18	MIMO Feedback Linearization of Redundant Robotic Systems using Task-Priority Operational Space Control. IFAC-PapersOnl inc. 2020, 53, 5459-5466.	0.9	3

#	Article	IF	CITATIONS
19	Task-Priority Control of Redundant Robotic Systems using Control Lyapunov and Control Barrier Function based Quadratic Programs. IFAC-PapersOnLine, 2020, 53, 9037-9044.	0.9	8
20	Trajectory Tracking and Path Following for Underactuated Marine Vehicles. IEEE Transactions on Control Systems Technology, 2019, 27, 1423-1437.	5.2	105
21	Trajectory Tracking for Underwater Swimming Manipulators using a Super Twisting Algorithm. Asian Journal of Control, 2019, 21, 208-223.	3.0	25
22	Model-Based Identification of Nanomechanical Properties in Atomic Force Microscopy: Theory and Experiments. IEEE Transactions on Control Systems Technology, 2019, 27, 2045-2057.	5.2	6
23	Path Following Control of Underactuated Surface Vessels in the Presence of Multiple Disturbances. , 2019, , .		4
24	Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots. Frontiers in Robotics and Al, 2019, 6, 57.	3.2	16
25	Experimental Verification of a Coordinated Path-Following Strategy for Underactuated Marine Vehicles. Frontiers in Robotics and AI, 2019, 6, 35.	3.2	4
26	Learning an AUV docking maneuver with a convolutional neural network. IFAC Journal of Systems and Control, 2019, 8, 100049.	1.7	9
27	Path planning and guidance for underactuated vehicles with limited field-of-view. Ocean Engineering, 2019, 174, 84-95.	4.3	11
28	Economic model predictive control for snake robot locomotion. , 2019, , .		11
29	Tracking control of an articulated intervention AUV in 6DOF using the generalized super-twisting algorithm. , 2019, , .		7
30	Path following control for articulated intervention-AUVs using geometric control of reduced attitude. IFAC-PapersOnLine, 2019, 52, 192-197.	0.9	2
31	Combined kinematic and dynamic control of an underwater swimming manipulator. IFAC-PapersOnLine, 2019, 52, 8-13.	0.9	5
32	Observer based path following for underactuated marine vessels in the presence of ocean currents: A global approach. Automatica, 2019, 100, 123-134.	5.0	64
33	Underactuated Marine Control Systems. , 2019, , 1-5.		0
34	The Underwater Swimming Manipulator—A Bioinspired Solution for Subsea Operations. IEEE Journal of Oceanic Engineering, 2018, 43, 402-417.	3.8	41
35	Set-Based Control for Autonomous Spray Painting. IEEE Transactions on Automation Science and Engineering, 2018, 15, 1785-1796.	5.2	20
36	A Benchmarking Framework for Control Methods of Maritime Cranes Based on the Functional Mockup Interface. IEEE Journal of Oceanic Engineering, 2018, 43, 468-483.	3.8	10

#	Article	IF	CITATIONS
37	An Integral Line-of-Sight Guidance Law with a Speed-dependent Lookahead Distance. , 2018, , .		1
38	Modeling of Underwater Snake Robots. , 2018, , 1-9.		1
39	A 3D Reactive Collision Avoidance Algorithm for Underactuated Vehicles. , 2018, , .		1
40	Semiglobal Exponential Stability of a Counter-Current and Co-Current Guidance Scheme. IFAC-PapersOnLine, 2018, 51, 274-280.	0.9	4
41	Trajectory tracking for an articulated intervention AUV using a super-twisting algorithm in 6 DOF. IFAC-PapersOnLine, 2018, 51, 311-316.	0.9	24
42	Modeling of Articulated Underwater Robots for Simulation and Control. , 2018, , .		14
43	A 3D Reactive Collision Avoidance Algorithm for Nonholonomic Vehicles. , 2018, , .		5
44	Inverse Kinematic Control of a Free-Floating Underwater Manipulator Using the Generalized Jacobian Matrix. , 2018, , .		1
45	Experimental investigation of locomotion efficiency and path-following for underwater snake robots with and without a caudal fin. Annual Reviews in Control, 2018, 46, 281-294.	7.9	12
46	Guidance of Autonomous Underwater Vehicles. , 2018, , 1-10.		1
47	Locomotion Efficiency Optimization of Biologically Inspired Snake Robots. Applied Sciences (Switzerland), 2018, 8, 80.	2.5	30
48	Lyapunov sufficient conditions for uniform semiglobal exponential stability. Automatica, 2017, 78, 97-102.	5.0	22
49	Integral Line-of-Sight Guidance for Path Following Control of Underwater Snake Robots: Theory and Experiments. IEEE Transactions on Robotics, 2017, 33, 610-628.	10.3	107
50	Path Planning for Formation Control of Autonomous Vehicles. Advances in Intelligent Systems and Computing, 2017, , 302-309.	0.6	4
51	Snake robots. Annual Reviews in Control, 2017, 44, 19-44.	7.9	52
52	An Experimental Investigation of Path Following for an Underwater Snake Robot with a Caudal Fin * *Research partly funded by VISTA - a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Statoil, and partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project no. 223254-NTNU AMOS IFAC-PapersOnLine, 2017, 50, 11182-11190.	0.9	2
53	Set-Based line-of-sight (LOS) path following with collision avoidance for underactuated unmanned surface vessels under the influence of ocean currents. , 2017, , .		15
54	Kinematic singularity avoidance for robot manipulators using set-based manipulability tasks. , 2017, , .		10

#	Article	IF	CITATIONS
55	Observer Based Path Following for Underactuated Marine Vessels in the Presence of Ocean Currents: A Local Approach. IFAC-PapersOnLine, 2017, 50, 13654-13661.	0.9	5
56	Spiral path planning for docking of underactuated vehicles with limited FOV. , 2017, , .		5
57	Set-based path following and obstacle avoidance for underwater snake robots. , 2017, , .		5
58	A reactive collision avoidance algorithm for nonholonomic vehicles. , 2017, , .		10
59	A reactive collision avoidance algorithm for vehicles with underactuated dynamics. , 2017, , .		6
60	Modeling and propulsion methods of underwater snake robots. , 2017, , .		12
61	Velocity and orientation control of underwater snake robots using absolute velocity feedback. , 2017, , .		2
62	Exponential convergence bounds in least squares estimation: Identification of viscoelastic properties in atomic force microscopy. , 2017, , .		1
63	Vehicle guidance with control action computed by a rao-blackwellized particle filter. , 2017, , .		1
64	Leader–Follower Synchronisation for a Class of Underactuated Systems. Lecture Notes in Control and Information Sciences, 2017, , 157-179.	1.0	4
65	Set-Based Tasks within the Singularity-Robust Multiple Task-Priority Inverse Kinematics Framework: General Formulation, Stability Analysis, and Experimental Results. Frontiers in Robotics and Al, 2016, 3,	3.2	76
66	Trajectory tracking of under-actuated marine vehicles. , 2016, , .		7
67	Planar maneuvering control of underwater snake robots using virtual holonomic constraints. Bioinspiration and Biomimetics, 2016, 11, 065005.	2.9	32
68	The underwater swimming manipulator - a bio-inspired AUV. , 2016, , .		17
69	Integral Line-of-Sight Guidance of Underwater Vehicles Without Neutral Buoyancy**This work was partly supported by the Research Council of Norway through the Centres of Excellence funding scheme, project no. 223254 - NTNU AMOS. IFAC-PapersOnLine, 2016, 49, 590-597.	0.9	5
70	Locomotion efficiency of underwater snake robots with thrusters. , 2016, , .		14
71	Modeling of underwater swimming manipulators**This research was partly funded by the Research Council of Norway through the Centres of Excellence funding scheme, project No. 223254 NTNU AMOS, and partly funded by VISTA, a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Statoil IFAC-PapersOnLine, 2016, 49, 81-88.	0.9	10
72	Path Following for Underactuated Marine Vessels. IFAC-PapersOnLine, 2016, 49, 588-593.	0.9	6

#	Article	IF	CITATIONS
73	A control framework for biologically inspired underwater swimming manipulators equipped with thrusters**This research was partly funded by the Research Council of Norway through the Centres of Excellence funding scheme, project No. 223254 NTNU AMOS, and partly funded by VISTA, a basic research program in collaboration between The Norwegian Academy of Science and Letters, and	0.9	13
74	Nonlinear tracking control scheme for a nanopositioner. , 2016, , .		0
75	Formation control of underactuated bio-inspired snake robots. Artificial Life and Robotics, 2016, 21, 282-294.	1.2	5
76	Multi-objective optimization for efficient motion of underwater snake robots. Artificial Life and Robotics, 2016, 21, 411-422.	1.2	13
77	Waypoint guidance control for underwater snake robots exposed to ocean currents. , 2016, , .		1
78	Line-of-sight curved path following for underactuated USVs and AUVs in the horizontal plane under the influence of ocean currents. , 2016, , .		29
79	Set-based Line-of-Sight (LOS) path following with collision avoidance for underactuated unmanned surface vessel. , 2016, , .		28
80	Vision Restricted Path Planning and Control for Underactuated Vehicles. IFAC-PapersOnLine, 2016, 49, 199-206.	0.9	3
81	Leader-follower synchronization with disturbance rejection. , 2016, , .		6
82	A modified dynamic window algorithm for horizontal collision avoidance for AUVs. , 2016, , .		31
83	A hybrid approach to underwater docking of AUVs with cross-current. , 2016, , .		10
84	Geometric path following with ocean current estimation for ASVs and AUVs. , 2016, , .		8
85	Planar Path Following of Underwater Snake Robots in the Presence of Ocean Currents. IEEE Robotics and Automation Letters, 2016, 1, 383-390.	5.1	34
86	Integral Line-of-Sight Guidance and Control of Underactuated Marine Vehicles: Theory, Simulations, and Experiments. IEEE Transactions on Control Systems Technology, 2016, 24, 1623-1642.	5.2	226
87	Maneuvering Control of Planar Snake Robots Using Virtual Holonomic Constraints. IEEE Transactions on Control Systems Technology, 2016, 24, 884-899.	5.2	80
88	Innovation in Underwater Robots: Biologically Inspired Swimming Snake Robots. IEEE Robotics and Automation Magazine, 2016, 23, 44-62.	2.0	94
89	Integrated Flexible Maritime Crane Architecture for the Offshore Simulation Centre AS (OSC): A Flexible Framework for Alternative Maritime Crane Control Algorithms. IEEE Journal of Oceanic Engineering, 2016, 41, 450-461.	3.8	17
90	Uniform Semiglobal Exponential Stability of Integral Line-of-Sight Guidance Lawsâ^—â^—This work was partly supported by the Research Council of Norway through the Centres of Excellence funding scheme, project no. 223254 - AMOS. IFAC-PapersOnLine, 2015, 48, 61-68.	0.9	9

Kristin Ytterstad Pettersen

#	Article	IF	CITATIONS
91	Controlling Kuka Industrial Robots: Flexible Communication Interface JOpenShowVar. IEEE Robotics and Automation Magazine, 2015, 22, 96-109.	2.0	43
92	3D coordinated path following with disturbance rejection for formations of under-actuated agents. , 2015, , .		0
93	A wave simulator and active heave compensation framework for demanding offshore crane operations. , 2015, , .		13
94	A Comparison Between the ILOS Guidance and the Vector Field Guidance. IFAC-PapersOnLine, 2015, 48, 89-94.	0.9	20
95	Navigation and Probability Assessment for Successful AUV Docking Using USBLâ^—â^—This work was partly supported by the Research Council of Norway through the Centres of Excellence funding scheme, project No. 223254 { AMOS, and project No. 205622 IFAC-PapersOnLine, 2015, 48, 204-209.	0.9	9
96	Adaptive Source Seeking with Leader-Follower Formation Controlâ^—â^—This work was supported by the Research Council of Norway through the Centres of Excellence funding scheme, Project numbe 223254 - AMOS IFAC-PapersOnLine, 2015, 48, 285-290.	0.9	8
97	A coupling library for the force dimension haptic devices and the 20-sim modelling and simulation environment. , 2015, , .		8
98	Analysis of underwater snake robot locomotion based on a control-oriented model. , 2015, , .		7
99	OpenMRH: A modular robotic hand generator plugin for OpenRAVE. , 2015, , .		5
100	Experimental results for set-based control within the singularity-robust multiple task-priority inverse kinematics framework. , 2015, , .		6
101	A sensor fusion wearable health-monitoring system with haptic feedback. , 2015, , .		41
102	Stability analysis for set-based control within the singularity-robust multiple task-priority inverse kinematics framework. , 2015, , .		19
103	Source seeking with a variable Leader multi-agent fixed topology network. , 2015, , .		1
104	Path following with disturbance rejection for inhomogeneous formations with underactuated agents. , 2015, , .		4
105	XBee positioning system with embedded haptic feedback for dangerous offshore operations: A preliminary study. , 2015, , .		4
106	Energy efficiency of underwater robots. IFAC-PapersOnLine, 2015, 48, 152-159.	0.9	15
107	Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns. Robotics and Biomimetics, 2015, 2, 8.	1.7	31
108	Output feedback motion control system for observation class ROVs based on a high-gain state observer: Theoretical and experimental results. Control Engineering Practice, 2015, 39, 90-102.	5.5	59

#	Article	IF	CITATIONS
109	Topography and force imaging in atomic force microscopy by state and parameter estimation. , 2015, , .		8
110	Energy efficiency of underwater snake robot locomotion. , 2015, , .		15
111	The new architecture of ModGrasp for mind-controlled low-cost sensorised modular hands. , 2015, , .		7
112	Underactuated leader-follower synchronisation for multi-agent systems with rejection of unknown disturbances. , 2015, , .		8
113	Incorporating set-based control within the singularity-robust multiple task-priority inverse kinematics. , 2015, , .		9
114	A control-oriented model of underwater snake robots exposed to currents. , 2015, , .		9
115	Line-of-Sight Path Following for Dubins Paths With Adaptive Sideslip Compensation of Drift Forces. IEEE Transactions on Control Systems Technology, 2015, 23, 820-827.	5.2	383
116	Differential geometric modelling and robust path following control of snake robots using sliding mode techniques. , 2014, , .		15
117	Integral line-of-sight for path following of underwater snake robots. , 2014, , .		25
118	Relative velocity control and integral line of sight for path following of autonomous surface vessels: Merging intuition with theory. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2014, 228, 180-191.	0.5	15
119	A 3D motion planning framework for snake robots. , 2014, , .		15
120	Direction following control of planar snake robots using virtual holonomic constraints. , 2014, , .		8
121	Null-space-based behavior guidance of planar dual-arm UVMS. , 2014, , .		6
122	Path following for formations of underactuated marine vessels under influence of constant ocean currents. , 2014, , .		16
123	Path Following of Underactuated Marine Underwater Vehicles in the Presence of Unknown Ocean Currents. , 2014, , .		3
124	Maneuvering control of planar snake robots based on a simplified model. , 2014, , .		13
125	Virtual holonomic constraint based direction following control of planar snake robots described by a simplified model. , 2014, , .		14
126	Stability analysis of underwater snake robot locomotion based on averaging theory. , 2014, , .		9

#	Article	IF	CITATIONS
127	Modeling of underwater snake robots moving in a vertical plane in 3D. , 2014, , .		8
128	JOpenShowVar: An open-source cross-platform communication interface to Kuka robots. , 2014, , .		17
129	A waypoint guidance strategy for underwater snake robots. , 2014, , .		19
130	Fast dual-arm manipulation using variable admittance control: Implementation and experimental results. , 2014, , .		12
131	Modeling of underwater snake robots. , 2014, , .		58
132	Path following of underactuated marine surface vessels in the presence of unknown ocean currents. , 2014, , .		30
133	Spacecraft-Manipulator Systems. Advances in Industrial Control, 2014, , 325-354.	0.5	0
134	Vehicle-Manipulator Systems. Advances in Industrial Control, 2014, , .	0.5	42
135	A control-oriented model of underwater snake robots. , 2014, , .		11
136	Field Robots. Advances in Industrial Control, 2014, , 355-368.	0.5	0
137	Compliant control of the body shape of snake robots. , 2014, , .		14
138	Mamba - A waterproof snake robot with tactile sensing. , 2014, , .		77
139	Damping and Tracking Control Schemes for Nanopositioning. IEEE/ASME Transactions on Mechatronics, 2014, 19, 432-444.	5.8	65
140	On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws. Automatica, 2014, 50, 2912-2917.	5.0	201
141	A mapping approach for controlling different maritime cranes and robots using ANN. , 2014, , .		9
142	Body shape and orientation control for locomotion of biologically-inspired snake robots. , 2014, , .		8
143	Path following control of planar snake robots using virtual holonomic constraints: theory and experiments. Robotics and Biomimetics, 2014, 1, 3.	1.7	24
144	Stability Analysis of a Hierarchical Architecture for Discrete-Time Sensor-Based Control of Robotic Systems. IEEE Transactions on Robotics, 2014, 30, 745-753.	10.3	14

#	Article	IF	CITATIONS
145	Improved Counter-Current and Co-Current Guidance of Underactuated Marine Vehicles with Semiglobal Stability Properties. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 12166-12173.	0.4	2
146	ILOS Guidance - Experiments and Tuning. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 4209-4214.	0.4	19
147	Rigid Body Kinematics. Advances in Industrial Control, 2014, , 91-124.	0.5	0
148	Kinematics of Vehicle-Manipulator Systems. Advances in Industrial Control, 2014, , 169-189.	0.5	1
149	Kinematics of Manipulators on a Fixed Base. Advances in Industrial Control, 2014, , 125-167.	0.5	0
150	Underwater Robotic Systems. Advances in Industrial Control, 2014, , 307-324.	0.5	0
151	Rigid Body Dynamics. Advances in Industrial Control, 2014, , 191-227.	0.5	1
152	Dynamics of Manipulators on a Fixed Base. Advances in Industrial Control, 2014, , 229-245.	0.5	0
153	Dynamics of Vehicle-Manipulator Systems. Advances in Industrial Control, 2014, , 247-284.	0.5	0
154	Preliminary Mathematical Concepts. Advances in Industrial Control, 2014, , 15-90.	0.5	0
155	Snake Robots. Advances in Industrial Control, 2013, , .	0.5	115
156	Design of a nonlinear damping control scheme for nanopositioning. , 2013, , .		5
157	Path following of marine surface vessels with saturated transverse actuators. , 2013, , .		7
158	Path following control of planar snake robots using virtual holonomic constraints. , 2013, , .		11
159	Lateral undulation of snake robots: a simplified model and fundamental properties. Robotica, 2013, 31, 1005-1036.	1.9	8
160	Discrete-time stability analysis of a control architecture for heterogeneous robotic systems. , 2013, , .		3
161	A universal control architecture for maritime cranes and robots using genetic algorithms as a possible mapping approach. , 2013, , .		14
162	Optimal mapping from a continuous 3D curve to the position and shape of a snake robot. , 2013, , .		0

#	Article	IF	CITATIONS
163	Counter-Current and Co-Current Guidance of Underactuated Unmanned Marine Vehicles. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 60-66.	0.4	6
164	Snake Robots From Biology to Nonlinear Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 110-115.	0.4	1
165	Fixed-Structure, Low-Order Damping and Tracking Control Schemes for Nanopositioning. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 28-36.	0.4	3
166	Path Following of Underactuated Surface Vessels in Presence of Unknown Constant Environmental Forces: Preliminary Results. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 85-90.	0.4	7
167	A Hybrid Model of Snake Robot Locomotion in Cluttered Environments. Advances in Industrial Control, 2013, , 193-219.	0.5	0
168	A Complex Model of Snake Robot Locomotion on Planar Surfaces. Advances in Industrial Control, 2013, , 39-54.	0.5	1
169	Development of a Mechanical Snake Robot for Motion Across Planar Surfaces. Advances in Industrial Control, 2013, , 55-61.	0.5	0
170	Path Following Control and Analysis of Snake Robots Based on the Poincaré Map. Advances in Industrial Control, 2013, , 89-101.	0.5	0
171	Path Following Control of Snake Robots in Cluttered Environments. Advances in Industrial Control, 2013, , 265-286.	0.5	0
172	A Simplified Model of Snake Robot Locomotion on Planar Surfaces. Advances in Industrial Control, 2013, , 103-129.	0.5	0
173	Analysis of Snake Robot Locomotion Based on Averaging Theory. Advances in Industrial Control, 2013, , 131-151.	0.5	0
174	Future Research Challenges of Snake Robot Locomotion. Advances in Industrial Control, 2013, , 287-291.	0.5	1
175	Hybrid Control of Obstacle-Aided Locomotion. Advances in Industrial Control, 2013, , 239-263.	0.5	0
176	Analysis and Synthesis of Snake Robot Locomotion. Advances in Industrial Control, 2013, , 63-87.	0.5	1
177	Adaptive feed-forward hysteresis compensation for piezoelectric actuators. Review of Scientific Instruments, 2012, 83, 085001.	1.3	35
178	Integral LOS guidance for horizontal path following of underactuated autonomous underwater vehicles in the presence of vertical ocean currents. , 2012, , .		33
179	A control framework for snake robot locomotion based on shape control points interconnected by Bézier curves. , 2012, , .		9
180	A modular and waterproof snake robot joint mechanism with a novel force/torque sensor. , 2012, , .		13

#	Article	IF	CITATIONS
181	On the Boundedness Property of the Inertia Matrix and Skew-Symmetric Property of the Coriolis Matrix for Vehicle-Manipulator Systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2012, 134, .	1.6	5
182	Topics on Current Compensation for Path Following Applications of Underactuated Underwater Vehicles. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 184-191.	0.4	10
183	Relative Velocity Control and Integral LOS for Path Following of Underactuated Surface Vessels. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 380-385.	0.4	37
184	A new Coriolis matrix factorization. , 2012, , .		10
185	Path following of underactuated autonomous underwater vehicles in the presence of ocean currents. , 2012, , .		44
186	Snake Robot Locomotion in Environments With Obstacles. IEEE/ASME Transactions on Mechatronics, 2012, 17, 1158-1169.	5.8	59
187	A review on modelling, implementation, and control of snake robots. Robotics and Autonomous Systems, 2012, 60, 29-40.	5.1	213
188	Waypoint guidance control of snake robots. , 2011, , .		15
189	Controllability and Stability Analysis of Planar Snake Robot Locomotion. IEEE Transactions on Automatic Control, 2011, 56, 1365-1380.	5.7	84
190	Output Feedback Tracking of Ships. IEEE Transactions on Control Systems Technology, 2011, 19, 442-448.	5.2	91
191	Path Following Control of Planar Snake Robots Using a Cascaded Approach. IEEE Transactions on Control Systems Technology, 2011, , .	5.2	55
192	Experimental Investigation of Obstacle-Aided Locomotion With a Snake Robot. IEEE Transactions on Robotics, 2011, 27, 792-800.	10.3	58
193	PI2-Controller Applied to a Piezoelectric Nanopositioner Using Conditional Integrators and Optimal Tuning. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 887-892.	0.4	8
194	Singularity-free dynamic equations of spacecraft-manipulator systems. Acta Astronautica, 2011, 69, 1057-1065.	3.2	12
195	Path following control of snake robots in unstructured environments. , 2011, , .		5
196	Stereographic projection for industrial manipulator tasks: Theory and experiments. , 2011, , .		4
197	Straight Line Path Following for Formations of Underactuated Marine Surface Vessels. IEEE Transactions on Control Systems Technology, 2011, 19, 493-506.	5.2	159
198	Active camera control with obstacle avoidance for remote operations with industrial manipulators: Implementation and experimental results. , 2011, , .		12

#	Article	IF	CITATIONS
199	Stereo visual odometry for pipe mapping. , 2011, , .		1
200	Stereographic projection for industrial manipulator tasks: Theory and experiments. , 2011, , .		1
201	Active camera control with obstacle avoidance for remote operations with industrial manipulators: Implementation and experimental results. , 2011, , .		0
202	Singularity-Free Dynamic Equations of AUV-Manipulator Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 31-36.	0.4	5
203	Curved Trajectory Tracking for Surface Vessels under Constant External Disturbances. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 467-472.	0.4	2
204	Smooth Transitions Between Trajectory Tracking and Path Following for Single Vehicles and Formations. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 115-120.	0.4	2
205	Tracking Control for a Piezoelectric Nanopositioner Using Estimated States and Feedforward Compensation of Hysteresis. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 96-104.	0.4	3
206	Two new design concepts for snake robot locomotion in unstructured environments. Paladyn, 2010, 1,	2.7	2
207	Singularity-free dynamic equations of vehicle–manipulator systems. Simulation Modelling Practice and Theory, 2010, 18, 712-731.	3.8	48
208	Curved trajectory tracking for surface vessel formations. , 2010, , .		7
209	Trajectory tracking for marine vehicles under constant disturbances: Controller design and tuning. , 2010, , .		0
210	Path following control of planar snake robots using a cascaded approach. , 2010, , .		11
211	Hybrid Modelling and Control of Obstacle-Aided Snake Robot Locomotion. IEEE Transactions on Robotics, 2010, 26, 781-799.	10.3	63
212	Fundamental properties of snake robot locomotion. , 2010, , .		10
213	Stability analysis of snake robot locomotion based on averaging theory. , 2010, , .		10
214	A snake robot with a contact force measurement system for obstacle-aided locomotion. , 2010, , .		30
215	A simplified model of planar snake robot locomotion. , 2010, , .		40
216	A hybrid model of obstacle-aided snake robot locomotion. , 2010, , .		5

A hybrid model of obstacle-aided snake robot locomotion. , 2010, , . 216

#	Article	IF	CITATIONS
217	Experimental investigation of a path following controller for planar snake robots. , 2010, , .		8
218	Experimental investigation of fundamental properties of snake robot locomotion. , 2010, , .		5
219	Stability analysis of snake robot locomotion based on Poincar $ ilde{A}$ ® maps. , 2009, , .		4
220	Straight line path following for formations of underactuated surface vessels under influence of constant ocean currents. , 2009, , .		31
221	Controllability analysis of planar snake robots influenced by viscous ground friction. , 2009, , .		12
222	A survey on snake robot modeling and locomotion. Robotica, 2009, 27, 999-1015.	1.9	168
223	Modelling and control of obstacle-aided snake robot locomotion based on jam resolution. , 2009, , .		28
224	A snake robot joint mechanism with a contact force measurement system. , 2009, , .		13
225	Maritime surveillance and monitoring using autonomous vehicles with conditional integrator-based control. , 2009, , .		2
226	Conditional Integrators for Path Following and Formation Control of Marine Vessels under Constant Disturbances. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 179-184.	0.4	10
227	Model-Based Output Feedback Control of Slender-Body Underactuated AUVs: Theory and Experiments. IEEE Transactions on Control Systems Technology, 2008, 16, 930-946.	5.2	117
228	Snake Robot Obstacle-Aided Locomotion: Modeling, Simulations, and Experiments. IEEE Transactions on Robotics, 2008, 24, 88-104.	10.3	195
229	3-D Snake Robot Motion: Nonsmooth Modeling, Simulations, and Experiments. IEEE Transactions on Robotics, 2008, 24, 361-376.	10.3	79
230	Global uniform asymptotic Lyapunov stabilization of a vectorial chained-form system with a smooth time-varying control law. , 2008, , .		0
231	Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents. , 2008, , .		164
232	Modular Pneumatic Snake Robot: 3D Modelling, Implementation And Control. Modeling, Identification and Control, 2008, 29, 21-28.	1.1	27
233	A new perspective on stable inversion of non-minimum phase nonlinear systems. Modeling, Identification and Control, 2008, 29, 29-35.	1.1	4
234	Operational space synchronization of two robot manipulators through a virtual velocity estimate. Modeling, Identification and Control, 2008, 29, 59-68.	1.1	4

#	Article	IF	CITATIONS
235	Tracking control for snake robot joints. , 2007, , .		23
236	Output feedback control of an AUV with experimental results. , 2007, , .		9
237	Snake robot obstacle aided locomotion: An experimental validation of a non-smooth modeling approach. , 2007, , .		12
238	Operational space synchronization of two robot manipulators through a virtual velocity estimate. , 2007, , .		5
239	Straight line path following for formations of underactuated underwater vehicles. , 2007, , .		25
240	Stable inversion of non-minimum phase nonlinear systems: A convergent systems approach. , 2007, , .		7
241	STRAIGHT LINE PATH FOLLOWING FOR FORMATIONS OF UNDERACTUATED SURFACE VESSELS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 521-526.	0.4	9
242	A MODEL-BASED OCEAN CURRENT OBSERVER FOR 6DOF UNDERWATER VEHICLES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 169-174.	0.4	6
243	OBJECTIVE DIRECTED CONTROL USING LOCAL MINIMISATION FOR AN AUTONOMOUS UNDERWATER VEHICLE. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 72-77.	0.4	1
244	ROBUST GLOBALLY EXPONENTIALLY STABILIZING CONTROL LAW FOR FULLY ACTUATED 6-DOF AUVS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 343-348.	0.4	1
245	Leader-Follower output reference state feedback synchronization control of Euler-Lagrange systems. , 2007, , .		8
246	A 6 DOF nonlinear observer for auvs with experimental results. , 2007, , .		12
247	Output feedback control of slender body underwater vehicles with current estimation. International Journal of Control, 2007, 80, 1136-1150.	1.9	20
248	Output synchronization control of ship replenishment operations: Theory and experiments. Control Engineering Practice, 2007, 15, 741-755.	5.5	53
249	A simulation game for nonlinear control theory education. Modeling, Identification and Control, 2007, 28, 45-51.	1.1	4
250	Robust observer design for underwater vehicles. , 2006, , .		5
251	Output Tracking Control of PWA Systems. , 2006, , .		7
252	Non-smooth 3D Modeling of a Snake Robot with Frictional Unilateral Constraints. , 2006, , .		12

#	Article	IF	CITATIONS
253	Developments in Snake Robot Modeling and Locomotion. , 2006, , .		21
254	Cross-track formation control of underactuated surface vessels. , 2006, , .		33
255	Global output feedback PID control for n-DOF Euler-Lagrange systems. , 2006, , .		11
256	Globalκ-exponential way-point maneuvering of ships: Theory and experiments. Automatica, 2006, 42, 677-687.	5.0	153
257	A Virtual Vehicle Approach to Underway Replenishment. , 2006, , 171-189.		10
258	Non-smooth 3D Modeling of a Snake Robot with External Obstacles. , 2006, , .		8
259	Cross-Track Formation Control of Underactuated Autonomous Underwater Vehicles. , 2006, , 35-54.		13
260	A UGAS observer for n-DOF Euler-Lagrange systems. , 2006, , .		6
261	Control of slender body underactuated AUVs with current estimation. , 2006, , .		6
262	A virtual vehicle approach to output synchronization control. , 2006, , .		21
263	An optimal guidance scheme for cross-track control of underactuated underwater vehicles. , 2006, , .		10
264	Formation Control of 6-DOF Euler-Lagrange Systems with Restricted Inter-Vehicle Communication. , 2006, , .		8
265	Robust observer design for underwater vehicles. , 2006, , .		4
266	MODULAR PNEUMATIC SNAKE ROBOT 3D MODELLING, IMPLEMENTATION AND CONTROL. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 19-24.	0.4	12
267	Optimal statistical operators for 3-dimensional rotational data: geometric interpretations and application to prosthesis kinematics. Robotica, 2005, 23, 283-292.	1.9	12
268	Global /spl kappa/-exponential way-point manoeuvering of ships. , 2004, , .		12
269	Global Uniform Asymptotic Stabilization of an Underactuated Surface Vessel: Experimental Results. IEEE Transactions on Control Systems Technology, 2004, 12, 891-903.	5.2	66
270	Master-Slave synchronization of robot manipulators. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 447-452.	0.4	6

#	Article	IF	CITATIONS
271	Experimental results on synchronization control of ship rendezvous operations. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 453-458.	0.4	12
272	Tracking control of an underactuated ship. IEEE Transactions on Control Systems Technology, 2003, 11, 52-61.	5.2	321
273	Ship replenishment using synchronization control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 247-252.	0.4	23
274	Global uniform asymptotic stabilization of an underactuated surface vessel. IEEE Transactions on Automatic Control, 2002, 47, 1759-1762.	5.7	161
275	Underactuated ship tracking control: Theory and experiments. International Journal of Control, 2001, 74, 1435-1446.	1.9	224
276	Semi-Global Practical Stabilization and Disturbance Adaptation for an Underactuated Ship. Modeling, Identification and Control, 2001, 22, 89-101.	1.1	7
277	Stabilization of a nonlinear underactuated hovercraft. International Journal of Robust and Nonlinear Control, 2000, 10, 645-654.	3.7	69
278	Underactuated dynamic positioning of a ship-experimental results. IEEE Transactions on Control Systems Technology, 2000, 8, 856-863.	5.2	113
279	Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle. IEEE Transactions on Automatic Control, 1999, 44, 112-115.	5.7	151
280	Global Practical Stabilization and Tracking for an Underactuated Ship - A Combined Averaging and Backstepping Approach. Modeling, Identification and Control, 1999, 20, 189-200.	1.1	51
281	Underactuated Ship Stabilization Using Integral Control: Experimental Results with Cybership I. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 125-130.	0.4	7
282	Free-floating robotic systems. , 1998, , 119-134.		8
283	Speed regulation of an induction motor using methods from nonholonomic control. , 1998, , .		1
284	Robust control of an underactuated surface vessel with thruster dynamics. , 1997, , .		34
285	Exponential Stabilization of an Underactuated Surface Vessel. Modeling, Identification and Control, 1997, 18, 239-248.	1.1	19
286	Control properties of underactuated vehicles. , 0, , .		49
287	Exponential stabilization of an underactuated surface vessel. , 0, , .		124
288	Position and attitude control of an underactuated autonomous underwater vehicle. , 0, , .		29

#	Article	IF	CITATIONS
289	Tracking control of an underactuated surface vessel. , 0, , .		66
290	Stabilization of a nonlinear underactuated hovercraft. , 0, , .		21
291	Semi-global practical stabilization and disturbance adaptation for an underactuated ship. , 0, , .		18
292	Way-point tracking control of ships. , 0, , .		110
293	Control of ship replenishment by output feedback synchronization. , 0, , .		2
294	Output synchronization control of Euler-Lagrange systems with nonlinear damping terms. , 0, , .		7
295	Adaptive way-point tracking control for underactuated autonomous vehicles. , O, , .		16
296	Cross-track control for underactuated autonomous vehicles. , 0, , .		43
297	Design of output-feedback control system for high speed maneuvering of an underwater vehicle. , 0, , .		7
298	Leader/Follower synchronization of satellite attitude without angular velocity measurements. , 0, , .		40
299	Way-point tracking control of ships. , 0, , .		22