Roberta Citro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4261307/publications.pdf

Version: 2024-02-01

185 papers

3,670 citations

30 h-index 56 g-index

187 all docs

187 docs citations

times ranked

187

2930 citing authors

#	Article	IF	CITATIONS
1	One dimensional bosons: From condensed matter systems to ultracold gases. Reviews of Modern Physics, 2011, 83, 1405-1466.	45.6	816
2	Controlling Luttinger Liquid Physics in Spin Ladders under a Magnetic Field. Physical Review Letters, 2008, 101, 137207.	7.8	171
3	Statics and dynamics of weakly coupled antiferromagnetic spin- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mfrac></mml:mrow></mml:math>	nl:ສຳ <mark>?</mark> >2 </td <td>/mml:mn></td>	/mml:mn>
4	Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Science, 2021, 3, .	4.9	87
5	A Josephson phase battery. Nature Nanotechnology, 2020, 15, 656-660.	31.5	82
6	Field-controlled magnetic order in the quantum spin-ladder system <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm .<="" 2009,="" 79,="" b,="" physical="" review="" td=""><td>l:mtext>H</td><td>pip</td></mm></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	l:mtext>H	pip
7	Evidence of Luttinger-liquid behavior in one-dimensional dipolar quantum gases. Physical Review A, 2007, 75, .	2.5	75
8	Dynamical stability of a many-body Kapitza pendulum. Annals of Physics, 2015, 360, 694-710.	2.8	75
9	Pumping in an interacting quantum wire. Physical Review B, 2003, 68, .	3.2	71
10	Zero-conductance resonances and spin filtering effects in ring conductors subject to Rashba coupling. Physical Review B, 2006, 74, .	3.2	69
11	Thermal transport in one-dimensional spin gap systems. Physical Review B, 2003, 67, .	3.2	68
12	Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors. Nanotechnology, 2011, 22, 275702.	2.6	63
13	Coherent spin-wave transport in an antiferromagnet. Nature Physics, 2021, 17, 1001-1006.	16.7	61
14	Phase diagram and momentum distribution of an interacting Bose gas in a bichromatic lattice. Physical Review A, 2008, 78, .	2.5	60
15	Spin Pumping and Measurement of Spin Currents in Optical Superlattices. Physical Review Letters, 2016, 117, 170405.	7.8	60
16	Effect of back-gate on contact resistance and on channel conductance in graphene-based field-effect transistors. Diamond and Related Materials, 2013, 38, 19-23.	3.9	57
17	Electrically controlled pumping of spin currents in topological insulators. Physical Review B, 2011, 84, .	3.2	50
18	Fractional quantization of the topological charge pumping in a one-dimensional superlattice. Physical Review B, 2015, 91, .	3.2	50

#	Article	IF	Citations
19	Nonadiabatic Breaking of Topological Pumping. Physical Review Letters, 2018, 120, 106601.	7.8	50
20	Electrical switching and interferometry of massive Dirac particles in topological insulator constrictions. Physical Review B, $2012, 86, .$	3.2	47
21	Persisting Meissner state and incommensurate phases of hard-core boson ladders in a flux. Physical Review B, 2015, 92, .	3.2	42
22	Pumping in a mesoscopic ring with Aharonov-Casher effect. Physical Review B, 2006, 73, .	3.2	41
23	Quasiparticle scattering time in niobium superconducting films. Physical Review B, 2011, 84, .	3.2	41
24	Signatures of topological phase transitions in Josephson current-phase discontinuities. Physical Review B, $2016, 93, \ldots$	3.2	41
25	Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions. New Journal of Physics, 2008, 10, 045011.	2.9	37
26	Collective excitations of trapped one-dimensional dipolar quantum gases. Physical Review A, 2008, 77, .	2.5	37
27	Incommensurate phases of a bosonic two-leg ladder under a flux. New Journal of Physics, 2016, 18, 055017.	2.9	36
28	Modification of the Bloch law in ferromagnetic nanostructures. Europhysics Letters, 2014, 106, 17001.	2.0	34
29	Critical properties and Bose-Einstein condensation in dimer spin systems. Physical Review B, 2007, 75, .	3.2	33
30	Persistent spin and charge currents and magnification effects in open ring conductors subject to Rashba coupling. Physical Review B, 2007, 75, .	3.2	33
31	Correlation Dynamics During a Slow Interaction Quench in a One-Dimensional Bose Gas. Physical Review Letters, 2014, 112, 065301.	7.8	29
32	Superfluidity and Anderson localisation for a weakly interacting Bose gas in a quasiperiodic potential. European Physical Journal B, 2009, 68, 435-443.	1.5	28
33	Low-energy behavior of the spin-tube and spin-orbital models. Physical Review B, 2000, 61, 11533-11551.	3.2	27
34	Adiabatic-antiadiabatic crossover in a spin-Peierls chain. Physical Review B, 2005, 72, .	3.2	27
35	Rashba spin-orbit-interaction-based quantum pump in graphene. Applied Physics Letters, 2012, 101, 122405.	3.3	26
36	Vortex lattice melting in a boson ladder in an artificial gauge field. Physical Review B, 2017, 96, .	3.2	26

#	Article	IF	CITATIONS
37	Spin current pumping in helical Luttinger liquids. Physical Review B, 2013, 87, .	3.2	25
38	Stability and pre-thermalization in chains of classical kicked rotors. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 465001.	2.1	25
39	Probing the Bond Order Wave Phase Transitions of the Ionic Hubbard Model by Superlattice Modulation Spectroscopy. Physical Review Letters, 2017, 119, 230403.	7.8	24
40	Localization, Topology, and Quantized Transport in Disordered Floquet Systems. Physical Review Letters, 2019, 123, 266601.	7.8	22
41	Competition between intrinsic and extrinsic effects in the quenching of the superconducting state in Fe(Se,Te) thin films. Physical Review B, 2016 , 93 , .	3.2	21
42	Topological phase diagram of a Kitaev ladder. European Physical Journal: Special Topics, 2018, 227, 1397-1404.	2.6	21
43	Charge density waves and bond order waves in a quarter filled extended Hubbard ladder. European Physical Journal B, 2003, 33, 419-438.	1.5	20
44	Adiabatic pumping in a double quantum dot structure with strong spin-orbit interaction. Physical Review B, 2009, 80, .	3.2	20
45	Quantum phases of spinful Fermi gases in optical cavities. Physical Review B, 2018, 97, .	3 . 2	20
46	Low-energy excitation spectrum of one-dimensional dipolar quantum gases. Physical Review B, 2008, 77,	3.2	19
47	Quantum Bose–Josephson junction with binary mixtures of BECs. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 135302.	1.5	19
48	Meissner to vortex phase transition in a two-leg ladder in artificial gauge field. European Physical Journal: Special Topics, 2015, 224, 525-531.	2.6	19
49	Quantum phase transitions of a two-leg bosonic ladder in an artificial gauge field. Physical Review B, 2018, 97, .	3 . 2	19
50	Quantum pumping and rectification effects in Aharonov-Bohm-Casher ring-dot systems. Physical Review B, 2008, 78, .	3.2	18
51	Effective theory of magnetization plateaus in a three-leg ladder with periodic boundary conditions. Journal of Physics Condensed Matter, 2000, 12, 3041-3075.	1.8	17
52	Pure spin currents generation in magnetic tunnel junctions by means of adiabatic quantum pumping. European Physical Journal B, 2006, 50, 483-489.	1.5	17
53	Spin-orbit coupled Bose-Einstein condensates in a double well. European Physical Journal: Special Topics, 2015, 224, 503-518.	2.6	17
54	Evolution of topological superconductivity by orbital-selective confinement in oxide nanowires. Physical Review B, 2019 , 100 , .	3.2	17

#	Article	IF	CITATIONS
55	Unveiling Signatures of Topological Phases in Open Kitaev Chains and Ladders. Nanomaterials, 2019, 9, 894.	4.1	17
56	Nonlocal pure spin current injection via quantum pumping and crossed Andreev reflection. Physical Review B, 2005, 72, .	3.2	15
57	Bosonization and entanglement spectrum for one-dimensional polar bosons on disordered lattices. New Journal of Physics, 2013, 15, 045023.	2.9	15
58	Polar bosons in one-dimensional disordered optical lattices. Physical Review B, 2013, 87, .	3.2	14
59	Cooper Pairs Spintronics in Triplet Spin Valves. Physical Review Letters, 2013, 111, 226801.	7.8	13
60	Noise-assisted charge pump in elastically deformable molecular junctions. Journal of Physics Condensed Matter, 2014, 26, 365301.	1.8	13
61	Charge stripes in the extended Hubbard model with nearest-neighbor Coulomb interaction. European Physical Journal B, 2001, 22, 343-349.	1.5	12
62	Stripe orders driven by long-range Coulomb forces in the 2D-Hubbard model. European Physical Journal B, 2001, 20, 343-348.	1.5	12
63	Aharonov-Bohm-Casher ring dot as a flux-tunable resonant tunneling diode. Physical Review B, 2008, 77, .	3.2	12
64	Quantum pumping in deformable quantum dots. Physical Review B, 2009, 80, .	3.2	12
65	Quantum waveguide theory of the Josephson effect in multiband superconductors. Physical Review B, 2015, 92, .	3.2	12
66	Quenching Current by Flux-Flow Instability in Iron-Chalcogenides Thin Films. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	12
67	Breathers and Raman scattering in a two-leg ladder with staggered Dzyaloshinskii-Moriya interaction. Physical Review B, 2007, 76, .	3.2	11
68	Effects of anisotropic spin-exchange interactions in spin ladders. Physical Review B, 2002, 65, .	3.2	10
69	Atom-Molecule Coherence in a One-Dimensional System. Physical Review Letters, 2005, 95, 130402.	7.8	10
70	A diagram approach to the strong coupling in the single-impurity Anderson model. Theoretical and Mathematical Physics(Russian Federation), 2008, 155, 914-935.	0.9	10
71	Quantum stirring as a probe of superfluidlike behavior in interacting one-dimensional Bose gases. Physical Review B, 2009, 79, .	3.2	10
72	Resonant Andreev Spectroscopy in normal-Metal/thin-Ferromagnet/Superconductor Device: Theory and Application. Scientific Reports, 2015, 5, 17544.	3.3	10

#	Article	IF	CITATIONS
73	A topological charge pump. Nature Physics, 2016, 12, 288-289.	16.7	10
74	Variational Bethe ansatz approach for dipolar one-dimensional bosons. Physical Review B, 2020, 101, .	3.2	10
75	Topological phases of a Kitaev tie. European Physical Journal: Special Topics, 2020, 229, 637-646.	2.6	10
76	rf-SQUID measurements of anomalous Josephson effect. Physical Review Research, 2020, 2, .	3.6	10
77	Kondo-lattice in an applied magnetic field: spin-split masses and metamagnetism. Physica B: Condensed Matter, 1999, 259-261, 213-214.	2.7	9
78	Topological Edge States of a Majorana BBH Model. Condensed Matter, 2021, 6, 15.	1.8	9
79	Renormalization of the electron-phonon interaction in presence of charge fluctuations. Physical Review B, 2005, 72, .	3.2	8
80	Phase transitions in the boson-fermion resonance model in one dimension. Physical Review A, 2006, 73,	2.5	8
81	Diagrammatic theory for the Anderson impurity model: Stationary property of the thermodynamic potential. Theoretical and Mathematical Physics(Russian Federation), 2009, 159, 551-560.	0.9	8
82	Interplay between charge-lattice interaction and strong electron correlations in cuprates: Phonon anomaly and spectral kinks. Europhysics Letters, 2010, 91, 47007.	2.0	8
83	Effects of geometric frustration in Kitaev chains. European Physical Journal Plus, 2021, 136, 1.	2.6	8
84	Gate-tunable pairing channels in superconducting non-centrosymmetric oxides nanowires. Npj Quantum Materials, 2022, 7, .	5.2	8
85	Effects of magnetic-field-induced chiral-spin interactions on quasi-one-dimensional spin systems. Physical Review B, 2001, 63, .	3.2	7
86	Pressure dependence of superconducting and magnetic critical temperatures in the ruthenocuprates. Physical Review B, 2005, 71, .	3.2	7
87	Incoherent midinfrared charge excitation and the high-energy anomaly in the photoemission spectra of cuprates. Physical Review B, 2007, 75, .	3.2	7
88	Luttinger liquid physics in the spin ladder material CuBr ₄ (C ₅ H ₁₂ N) ₂ . Physica Status Solidi (B): Basic Research, 2010, 247, 656-658.	1.5	7
89	Interaction effects in nonequilibrium transport properties of a four-terminal topological corner junction. Physical Review B, 2014, 90, .	3.2	7
90	Universal transport dynamics in a quenched tunnel-coupled Luttinger liquid. Physical Review B, 2016, 94, .	3.2	7

#	Article	IF	Citations
91	Lattice modulation spectroscopy of one-dimensional quantum gases: Universal scaling of the absorbed energy. Physical Review Research, 2020, 2, .	3.6	7
92	Topological Phases of an Interacting Majorana Benalcazar–Bernevig–Hughes Model. Condensed Matter, 2022, 7, 26.	1.8	7
93	Bond-stretching phonon anomalies and charge fluctuations in copper oxide superconductors. Physical Review B, 2007, 75, .	3.2	6
94	Memory effects in adiabatic quantum pumping with parasitic nonlinear dynamics. Physical Review B, 2010, 82, .	3.2	6
95	Spin-torque generation by dc or ac voltages in quasi-one-dimensional magnetic layered structures. Physical Review B, 2010, 81, .	3.2	6
96	Generalized Blonder-Tinkham-Klapwijk theory and conductance spectra with particle-hole mixing interface potential. European Physical Journal B, 2015, 88, 1.	1.5	6
97	Minimal model of point contact Andreev reflection spectroscopy of multiband superconductors. Physical Review B, 2015, 91, .	3.2	6
98	Spin-orbital polarization of Majorana edge states in oxide nanowires. Physical Review B, 2020, 102, .	3.2	6
99	Polarization angle dependence of the breathing mode in confined one-dimensional dipolar bosons. Physical Review B, 2021, 103, .	3.2	6
100	Formation and fragmentation of quantum droplets in a quasi-one-dimensional dipolar Bose gas. Physical Review B, 2022, 106, .	3.2	6
101	Metallic ferromagnetism in the presence of orbital degeneracy. Journal of Physics Condensed Matter, 2005, 17, 1113-1126.	1.8	5
102	Role of electron-phonon interaction on quasiparticle dispersion in the strongly correlated cuprate superconductors. Physical Review B, 2006, 73, .	3.2	5
103	Quantum dynamics of a binary mixture of BECs in a double-well potential: a Holstein–Primakoff approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 115306.	1.5	5
104	Point contact Andreev reflection spectroscopy on ferromagnet/superconductor bilayers. Physica C: Superconductivity and Its Applications, 2014, 503, 158-161.	1.2	5
105	Fractional quantization of charge and spin in topological quantum pumps. European Physical Journal: Special Topics, 2017, 226, 2781-2791.	2.6	5
106	Topological phase diagram of coupled spinless p-wave superconductors. Journal of Physics: Conference Series, 2019, 1226, 012015.	0.4	5
107	Non-Hermitian topological phases in an extended Kitaev model. Journal of Physics: Conference Series, 2020, 1548, 012026.	0.4	5
108	Valence transition in the extended Anderson lattice model. Solid State Communications, 1997, 104, 623-627.	1.9	4

#	Article	IF	Citations
109	Raman scattering cross section of spin ladders. Physical Review B, 2000, 62, 8622-8625.	3.2	4
110	Magnetostriction in an array of spin chains under a magnetic field. Physical Review B, 2005, 71, .	3.2	4
111	Incompressible states of a two-component Fermi gas in a double-well optical lattice. Physical Review A, 2010, 82, .	2.5	4
112	Parasitic pumping currents in an interacting quantum dot. Physical Review B, 2010, 82, .	3.2	4
113	Effect of impurities on Fabry-Pérot physics of ballistic carbon nanotubes. Physical Review B, 2011, 84, .	3.2	4
114	Light scattering in inhomogeneous Tomonaga-Luttinger liquids. Physical Review A, 2012, 85, .	2.5	4
115	Response functions in multicomponent Luttinger liquids. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P12020.	2.3	4
116	Stability Mechanisms of High Current Transport in Iron-Chalcogenide Superconducting Films. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	4
117	Dynamical localization of interacting ultracold atomic kicked rotors. Europhysics Letters, 2019, 127, 50008.	2.0	4
118	Effective interactions among heavy quasiparticles: Hamiltonian approach in the Kondo lattice limit. Physica B: Condensed Matter, 1997, 230-232, 469-471.	2.7	3
119	Introduction to Renormalization Group and Ward Identities in Critical Phenomena and in Fermi and Bose Liquids. AIP Conference Proceedings, 2002, , .	0.4	3
120	Bond stretching phonon anomalies due to incommensurate charge density wave instabilities in high-Tc cuprates. European Physical Journal B, 2008, 63, 179-185.	1.5	3
121	Critical Temperature and Isotope Exponent in a Two-band Model for Superconducting Fe-pnictides. Journal of Superconductivity and Novel Magnetism, 2009, 22, 539-542.	1.8	3
122	Scattering theory of magnetic/superconducting junctions with spin-active interfaces. Physical Review B, 2011, 84, .	3.2	3
123	Non-equilibrium slave bosons approach to quantum pumping in interacting quantum dots. Journal of Physics: Conference Series, 2016, 696, 012014.	0.4	3
124	A zero-dimensional topologically nontrivial state in a superconducting quantum dot. Beilstein Journal of Nanotechnology, 2018, 9, 1705-1714.	2.8	3
125	Accessing finite-momentum excitations of the one-dimensional Bose-Hubbard model using superlattice-modulation spectroscopy. Physical Review A, 2018, 98, .	2.5	3
126	Spectral Function of a Boson Ladder in an Artificial Gauge Field. Condensed Matter, 2020, 5, 15.	1.8	3

#	Article	IF	Citations
127	Kondo lattice state within the slave boson approach: spin-split masses and effective interaction among heavy quasiparticles. Zeitschrift Fýr Physik B-Condensed Matter, 1996, 103, 267-270.	1.1	2
128	Perturbation expansion for the p-d model around the atomic limit: A study on spin magnetic susceptibility. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1695-1696.	1.2	2
129	Magnetic susceptibility and specific heat of the Kondo lattice with short-range magnetic correlations. Physica B: Condensed Matter, 1999, 259-261, 210-212.	2.7	2
130	THEORY OF CRITICAL CHARGE FLUCTUATIONS AND PSEUDOGAP FORMATION IN THE SINGLE-BAND HUBBARD MODEL. International Journal of Modern Physics B, 2000, 14, 3000-3005.	2.0	2
131	Non-Fermi liquid behavior in the stripe phase of the extended Hubbard model. European Physical Journal B, 2002, 28, 55-60.	1.5	2
132	Phase rigidity breaking in open Aharonov-Bohm ring coupled to a cantilever. Physical Review B, 2007, 76, .	3.2	2
133	Quantum stirring in a one-dimensional Bose gas. Journal of Physics: Conference Series, 2009, 150, 032015.	0.4	2
134	Quantum pumping of interacting bosons. Physical Review A, 2011, 83, .	2.5	2
135	Bond Stretching Phonon Softening of Underdoped Copper-Oxide Superconductors. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1303-1306.	1.8	2
136	Fluid structure of 1D spinful Fermi gases with long-range interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 215301.	1.5	2
137	Ballistic transport through quantum point contacts of multiorbital oxides. Physical Review B, 2021, 103, .	3.2	2
138	Cumulant expansion for the p–d model: density of states and hole occupation. Zeitschrift Für Physik B-Condensed Matter, 1996, 103, 153-155.	1.1	1
139	Cumulant expansion for the p-d model. Physica B: Condensed Matter, 1997, 230-232, 448-450.	2.7	1
140	Doping and temperature dependence of the specific heat in the p-d model. Solid State Communications, 1998, 106, 745-749.	1.9	1
141	Symmetry of the Pairing State and Transition Temperature in the P-D Model. International Journal of Modern Physics B, 1999, 13, 1201-1206.	2.0	1
142	Charge fluctuations in the 2D Hubbard model. Physica C: Superconductivity and Its Applications, 2000, 341-348, 249-250.	1.2	1
143	Non Abelian bosonization and WZNW models. AIP Conference Proceedings, 2001, , .	0.4	1
144	Energy scales and quasiparticle properties in an extended Hubbard model for HTC. European Physical Journal B, 2003, 37, 15-18.	1.5	1

#	Article	IF	CITATIONS
145	Phase diagram of a quarter filled ladder. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E663-E664.	2.3	1
146	Static stripes in the anisotropic Hubbard model. Physica C: Superconductivity and Its Applications, 2004, 408-410, 449-450.	1.2	1
147	Bond stretching phonon softening and isotope effect in a phenomenological model for cuprate superconductors. Journal of Physics: Conference Series, 2010, 200, 012022.	0.4	1
148	Diagram theory for the periodic anderson model: Stationarity of the thermodynamic potential. Theoretical and Mathematical Physics(Russian Federation), 2010, 162, 366-382.	0.9	1
149	Adiabatic quantum pumping, magnification effects, and quantum size effects of spin torque in magnetic tunnel junctions. Physical Review B, 2010, 82, .	3.2	1
150	Nonequilibrium properties of an atomic quantum dot coupled to a Bose-Einstein condensate. European Physical Journal: Special Topics, 2013, 217, 55-62.	2.6	1
151	altimg="si0034.gif" overflow="scroll"> <mml:mrow><mml:msub subscriptshift="65%"><mml:mrow><mml:mi>LaO</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mn>1</mml:mn><r form="prefix">â^²<mml:mi>x</mml:mi></r </mml:mrow></mml:mrow><mml:mrow><mml:m subscriptshift="65%"><mml:mrow><mml:mi< th=""><th>nml:mo istib</th><th>1</th></mml:mi<></mml:mrow></mml:m </mml:mrow></mml:msub </mml:mrow>	nml:mo istib	1
152	mathvariant="normal"s formulation of mathrows employees employees (mmlanews employees) at the complex of mathrows employees and doping dependence of normal state spectral properties in a two-orbital model for ferropnictides. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1648-1657.	/mml:mrov 2.1	w> <mml:m:< th=""></mml:m:<>
153	Topological states of matter: theory and applications. European Physical Journal: Special Topics, 2018, 227, 1291-1294.	2.6	1
154	Theory of a peristaltic pump for fermionic quantum fluids. Physical Review B, 2018, 97, .	3.2	1
155	Doping and temperature dependence of the spin susceptibility in the p-d model. European Physical Journal B, 1999, 11, 235.	1.5	1
156	Many Body Current Density from Foldy–Wouthuysen Transformation of the Dirac–Coulomb Hamiltonian. Physchem, 2022, 2, 96-107.	1.1	1
157	Superconductivity in correlated electron systems with nearest-neighbour attractive interaction. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2175-2176.	1.2	O
158	Specific heat in the three-band Hubbard model. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1789-1790.	1.2	0
159	Fermi surface evolution in the p–d model. Solid State Communications, 1999, 111, 305-310.	1.9	O
160	A study of the pairing symmetry in the p–d model. Physica B: Condensed Matter, 1999, 259-261, 473-475.	2.7	0
161	The Fermi surface evolution in La2â^'xSrxCuO4. Physica B: Condensed Matter, 2000, 281-282, 814-815.	2.7	O
162	Incommensurate modulation of spin magnetic susceptibility in single band Hubbard model. Physica C: Superconductivity and Its Applications, 2000, 341-348, 247-248.	1.2	0

#	Article	IF	CITATIONS
163	QUASIPARTICLES IN HIGH-TEMPERATURE SUPERCONDUCTORS. International Journal of Modern Physics B, 2003, 17, 578-583.	2.0	O
164	STRIPE PHASE OF THE EXTENDED HUBBARD MODEL. International Journal of Modern Physics B, 2003, 17, 573-577.	2.0	0
165	The cumulant expansion approach for strongly correlated electron models. AIP Conference Proceedings, 2003, , .	0.4	0
166	Quantum phase transitions in a quarter-filled Hubbard ladder. Physica C: Superconductivity and Its Applications, 2004, 408-410, 290-291.	1.2	0
167	Ferromagnetism in orbitally degenerate Hubbard model. Physica B: Condensed Matter, 2005, 359-361, 678-680.	2.7	0
168	Renormalization of the electron–phonon interaction in the Hubbard model. Physica B: Condensed Matter, 2005, 359-361, 696-698.	2.7	0
169	The boson–fermion resonance model in one dimension. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, S13-S23.	1.5	0
170	Influence of strong electron correlation on the elâ \in "ph vertex in the one-band Hubbard model. Journal of Physics and Chemistry of Solids, 2006, 67, 169-171.	4.0	0
171	Effect of electron–phonon interaction on the single-particle spectral properties of the Hubbard model. Physica B: Condensed Matter, 2006, 378-380, 463-464.	2.7	0
172	Effective electron–phonon coupling in the Hubbard–Holstein model in presence of strong correlations and density fluctuations. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1055-1056.	1.2	0
173	Anomalous bond stretching phonons as a probe of charge fluctuations in perovskites. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1155-1156.	1.2	0
174	Spin-polarized transport in Rashba controlled rings. Journal of Magnetism and Magnetic Materials, 2007, 316, e994-e997.	2.3	0
175	High-energy kink in the single-particle spectra of cuprates. Physica B: Condensed Matter, 2008, 403, 1165-1166.	2.7	0
176	Topical issue on Novel Quantum Phases and Mesoscopic Physics in Quantum Gases. European Physical Journal B, 2009, 68, 291-291.	1.5	0
177	Probing 1D super-strongly correlated dipolar quantum gases. Laser Physics, 2009, 19, 554-557.	1.2	0
178	Isotope effect and bond-stretching phonon anomaly in high-Tc cuprates. European Physical Journal B, 2010, 73, 509-513.	1.5	0
179	A dynamical probe of superfluidity in one-dimension: The adiabatic quantum pump. Journal of Physics: Conference Series, 2012, 391, 012142.	0.4	0
180	Novel quantum phases and mesoscopic physics in quantum gases. European Physical Journal: Special Topics, 2013, 217, 1-2.	2.6	0

ROBERTA CITRO

#	Article	IF	CITATIONS
181	Novel quantum phases and mesoscopic physics in quantum gases. European Physical Journal: Special Topics, 2015, 224, 473-475.	2.6	0
182	Quantum gases and quantum coherence. European Physical Journal: Special Topics, 2017, 226, 2693-2696.	2.6	0
183	Introduction to the Volume. Springer Series in Solid-state Sciences, 2018, , 1-4.	0.3	O
184	Superconductivity and functional oxides. European Physical Journal: Special Topics, 2019, 228, 625-629.	2.6	0
185	Iron Based Supercondutors: Introduction to the Volume. Springer Series in Solid-state Sciences, 2017, , 1-6.	0.3	0