
## Jonathan M Monk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4261033/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Constraint-based models predict metabolic and associated cellular functions. Nature Reviews<br>Genetics, 2014, 15, 107-120.                                                                                                                                          | 16.3 | 714       |
| 2  | Using Genome-scale Models to Predict Biological Capabilities. Cell, 2015, 161, 971-987.                                                                                                                                                                              | 28.9 | 590       |
| 3  | Wdr5 Mediates Self-Renewal and Reprogramming via the Embryonic Stem Cell Core Transcriptional Network. Cell, 2011, 145, 183-197.                                                                                                                                     | 28.9 | 521       |
| 4  | iML1515, a knowledgebase that computes Escherichia coli traits. Nature Biotechnology, 2017, 35, 904-908.                                                                                                                                                             | 17.5 | 425       |
| 5  | MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.                                                                                                                                                               | 17.5 | 314       |
| 6  | Genome-scale metabolic reconstructions of multiple <i>Escherichia coli</i> strains highlight<br>strain-specific adaptations to nutritional environments. Proceedings of the National Academy of<br>Sciences of the United States of America, 2013, 110, 20338-20343. | 7.1  | 270       |
| 7  | What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.<br>PLoS Neglected Tropical Diseases, 2016, 10, e0004403.                                                                                                            | 3.0  | 253       |
| 8  | Comparative genome-scale modelling of <i>Staphylococcus aureus</i> strains identifies<br>strain-specific metabolic capabilities linked to pathogenicity. Proceedings of the National Academy of<br>Sciences of the United States of America, 2016, 113, E3801-9.     | 7.1  | 229       |
| 9  | Optimizing genome-scale network reconstructions. Nature Biotechnology, 2014, 32, 447-452.                                                                                                                                                                            | 17.5 | 185       |
| 10 | Highâ€quality genomeâ€scale metabolic modelling of <i>Pseudomonas putida</i> highlights its broad<br>metabolic capabilities. Environmental Microbiology, 2020, 22, 255-269.                                                                                          | 3.8  | 127       |
| 11 | Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nature Communications, 2018, 9, 4306.                                                                                      | 12.8 | 126       |
| 12 | Multi-omics Quantification of Species Variation of Escherichia coli Links Molecular Features with Strain Phenotypes. Cell Systems, 2016, 3, 238-251.e12.                                                                                                             | 6.2  | 124       |
| 13 | Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nature Communications, 2018, 9, 3771.                                                                                                                | 12.8 | 109       |
| 14 | BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data. PLoS Computational Biology, 2019, 15, e1006971.                                                                                                             | 3.2  | 83        |
| 15 | Model-driven discovery of underground metabolic functions in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 929-934.                                                                          | 7.1  | 82        |
| 16 | Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14368-14373.                                                                      | 7.1  | 79        |
| 17 | Characterizing Strain Variation in Engineered E.Âcoli Using a Multi-Omics-Based Workflow. Cell<br>Systems, 2016, 2, 335-346.                                                                                                                                         | 6.2  | 73        |
| 18 | Updated and standardized genome-scale reconstruction of Mycobacterium tuberculosis H37Rv, iEK1011, simulates flux states indicative of physiological conditions. BMC Systems Biology, 2018, 12, 25.                                                                  | 3.0  | 63        |

**JONATHAN M MONK** 

| #  | Article                                                                                                                                                                                                                              | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A workflow for generating multi-strain genome-scale metabolic models of prokaryotes. Nature<br>Protocols, 2020, 15, 1-14.                                                                                                            | 12.0 | 62        |
| 20 | A biochemically-interpretable machine learning classifier for microbial GWAS. Nature Communications, 2020, 11, 2580.                                                                                                                 | 12.8 | 51        |
| 21 | Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLoS Computational Biology, 2020, 16, e1007608.                                                | 3.2  | 49        |
| 22 | Systems biology of the structural proteome. BMC Systems Biology, 2016, 10, 26.                                                                                                                                                       | 3.0  | 46        |
| 23 | Impact of insertion sequences on convergent evolution of Shigella species. PLoS Genetics, 2020, 16, e1008931.                                                                                                                        | 3.5  | 43        |
| 24 | Systems biology definition of the core proteome of metabolism and expression is consistent with<br>high-throughput data. Proceedings of the National Academy of Sciences of the United States of<br>America, 2015, 112, 10810-10815. | 7.1  | 42        |
| 25 | A computational knowledge-base elucidates the response of Staphylococcus aureus to different media<br>types. PLoS Computational Biology, 2019, 15, e1006644.                                                                         | 3.2  | 41        |
| 26 | iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE. Frontiers in Genetics, 2018, 9, 121.                                                                                   | 2.3  | 40        |
| 27 | Escherichia coli B2 strains prevalent in inflammatory bowel disease patients have distinct metabolic capabilities that enable colonization of intestinal mucosa. BMC Systems Biology, 2018, 12, 66.                                  | 3.0  | 39        |
| 28 | Metagenomics-Based, Strain-Level Analysis of Escherichia coli From a Time-Series of Microbiome<br>Samples From a Crohn's Disease Patient. Frontiers in Microbiology, 2018, 9, 2559.                                                  | 3.5  | 37        |
| 29 | ssbio: a Python framework for structural systems biology. Bioinformatics, 2018, 34, 2155-2157.                                                                                                                                       | 4.1  | 36        |
| 30 | Predicting microbial growth. Science, 2014, 344, 1448-1449.                                                                                                                                                                          | 12.6 | 35        |
| 31 | Comparative Genome-Scale Metabolic Modeling of Metallo-Beta-Lactamase–Producing<br>Multidrug-Resistant Klebsiella pneumoniae Clinical Isolates. Frontiers in Cellular and Infection<br>Microbiology, 2019, 9, 161.                   | 3.9  | 33        |
| 32 | Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an<br>Anaerobic Neocallimastigomycota Fungus. MSystems, 2021, 6, .                                                                         | 3.8  | 33        |
| 33 | Thermodynamic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway<br>choice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>11339-11344.                | 7.1  | 30        |
| 34 | The Staphylococcus aureus Two-Component System AgrAC Displays Four Distinct Genomic<br>Arrangements That Delineate Genomic Virulence Factor Signatures. Frontiers in Microbiology, 2018, 9,<br>1082.                                 | 3.5  | 26        |
| 35 | Systems Biology and Pangenome of <i>Salmonella</i> O-Antigens. MBio, 2019, 10, .                                                                                                                                                     | 4.1  | 26        |
| 36 | Pangenome Analytics Reveal Two-Component Systems as Conserved Targets in ESKAPEE Pathogens.<br>MSystems, 2021, 6, .                                                                                                                  | 3.8  | 24        |

**JONATHAN M MONK** 

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Draft Genome Sequences of Four Metallo-Beta-Lactamase-Producing Multidrug-Resistant Klebsiella<br>pneumoniae Clinical Isolates, Including Two Colistin-Resistant Strains, from Cairo, Egypt.<br>Microbiology Resource Announcements, 2019, 8, . | 0.6 | 23        |
| 38 | Comparative pangenomics: analysis of 12 microbial pathogen pangenomes reveals conserved global structures of genetic and functional diversity. BMC Genomics, 2022, 23, 7.                                                                       | 2.8 | 22        |
| 39 | Strain-Specific Metabolic Requirements Revealed by a Defined Minimal Medium for Systems Analyses of<br><i>Staphylococcus aureus</i> . Applied and Environmental Microbiology, 2019, 85, .                                                       | 3.1 | 21        |
| 40 | Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations. Scientific Reports, 2015, 5, 16025.                                                                             | 3.3 | 19        |
| 41 | Systems biology analysis of the Clostridioides difficile core-genome contextualizes<br>microenvironmental evolutionary pressures leading to genotypic and phenotypic divergence. Npj<br>Systems Biology and Applications, 2020, 6, 31.          | 3.0 | 15        |
| 42 | Genomeâ€scale metabolic modeling reveals key features of a minimal gene set. Molecular Systems<br>Biology, 2021, 17, e10099.                                                                                                                    | 7.2 | 15        |
| 43 | Characterization of CA-MRSA TCH1516 exposed to nafcillin in bacteriological and physiological media.<br>Scientific Data, 2019, 6, 43.                                                                                                           | 5.3 | 14        |
| 44 | Predicting Antimicrobial Resistance and Associated Genomic Features from Whole-Genome<br>Sequencing. Journal of Clinical Microbiology, 2019, 57, .                                                                                              | 3.9 | 14        |
| 45 | Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute<br>Pseudomonas aeruginosa infection. PLoS Computational Biology, 2019, 15, e1007562.                                                              | 3.2 | 11        |
| 46 | Reduced Production of Bacterial Membrane Vesicles Predicts Mortality in ST45/USA600<br>Methicillin-Resistant Staphylococcus aureus Bacteremia. Antibiotics, 2020, 9, 2.                                                                         | 3.7 | 11        |
| 47 | Reconstruction and Validation of a Genome-Scale Metabolic Model of Streptococcus oralis (iCJ415), a<br>Human Commensal and Opportunistic Pathogen. Frontiers in Genetics, 2020, 11, 116.                                                        | 2.3 | 11        |
| 48 | A curated collection of <i>Klebsiella</i> metabolic models reveals variable substrate usage and gene essentiality. Genome Research, 2022, , .                                                                                                   | 5.5 | 10        |
| 49 | Pangenome analysis of Enterobacteria reveals richness of secondary metabolite gene clusters and their associated gene sets. Synthetic and Systems Biotechnology, 2022, 7, 900-910.                                                              | 3.7 | 9         |
| 50 | Model-driven discovery of synergistic inhibitors against E. coli and S. enterica serovar Typhimurium targeting a novel synthetic lethal pair, aldA and prpC. Frontiers in Microbiology, 2015, 6, 958.                                           | 3.5 | 8         |
| 51 | Machine learning in computational biology to accelerate high-throughput protein expression.<br>Bioinformatics, 2017, 33, 2487-2495.                                                                                                             | 4.1 | 8         |
| 52 | Profiling the effect of nafcillin on HA-MRSA D712 using bacteriological and physiological media.<br>Scientific Data, 2019, 6, 322.                                                                                                              | 5.3 | 8         |
| 53 | Distinct Subpopulations of Intravalvular Methicillin-Resistant Staphylococcus aureus with Variable<br>Susceptibility to Daptomycin in Tricuspid Valve Endocarditis. Antimicrobial Agents and Chemotherapy,<br>2020, 64, .                       | 3.2 | 8         |
| 54 | Mathematical models to study the biology of pathogens and the infectious diseases they cause.<br>IScience, 2022, 25, 104079.                                                                                                                    | 4.1 | 8         |

**JONATHAN M MONK** 

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Pangenome Flux Balance Analysis Toward Panphenomes. , 2020, , 219-232.                                                                                                                                                                                      |     | 7         |
| 56 | The aldehyde dehydrogenase, AldA, is essential for L-1,2-propanediol utilization in laboratory-evolved<br>Escherichia coli. Microbiological Research, 2017, 194, 47-52.                                                                                     | 5.3 | 5         |
| 57 | Genome-Scale Metabolic Model of Xanthomonas phaseoli pv. manihotis: An Approach to Elucidate<br>Pathogenicity at the Metabolic Level. Frontiers in Genetics, 2020, 11, 837.                                                                                 | 2.3 | 5         |
| 58 | Adaptations of Escherichia coli strains to oxidative stress are reflected in properties of their structural proteomes. BMC Bioinformatics, 2020, 21, 162.                                                                                                   | 2.6 | 5         |
| 59 | Identifying the effect of vancomycin on health care–associated methicillin-resistant<br><i>Staphylococcus aureus</i> strains using bacteriological and physiological media. GigaScience,<br>2021, 10, .                                                     | 6.4 | 5         |
| 60 | Rapid resistance development to three antistaphylococcal therapies in antibiotic-tolerant staphylococcus aureus bacteremia. PLoS ONE, 2021, 16, e0258592.                                                                                                   | 2.5 | 5         |
| 61 | Systems biology approach to functionally assess the <i>Clostridioides difficile</i> pangenome reveals genetic diversity with discriminatory power. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119396119. | 7.1 | 5         |
| 62 | A systems approach discovers the role and characteristics of seven LysR type transcription factors in Escherichia coli. Scientific Reports, 2022, 12, 7274.                                                                                                 | 3.3 | 5         |
| 63 | Integration of Comparative Genomics with Genome-Scale Metabolic Modeling to Investigate<br>Strain-Specific Phenotypical Differences. Methods in Molecular Biology, 2018, 1716, 151-175.                                                                     | 0.9 | 4         |
| 64 | Gapless, Unambiguous Genome Sequence for Escherichia coli C, a Workhorse of Industrial Biology.<br>Microbiology Resource Announcements, 2018, 7, .                                                                                                          | 0.6 | 3         |
| 65 | High-Quality Genome-Scale Models From Error-Prone, Long-Read Assemblies. Frontiers in<br>Microbiology, 2020, 11, 596626.                                                                                                                                    | 3.5 | 3         |
| 66 | Computation of condition-dependent proteome allocation reveals variability in the macro and micro nutrient requirements for growth. PLoS Computational Biology, 2021, 17, e1007817.                                                                         | 3.2 | 3         |
| 67 | Transmission of <i>Klebsiella</i> strains and plasmids within and between greyâ€headed flying fox colonies. Environmental Microbiology, 2022, 24, 4425-4436.                                                                                                | 3.8 | 3         |
| 68 | Genome Sequence Comparison of Staphylococcus aureus TX0117 and a Beta-Lactamase-Cured Derivative<br>Shows Increased Cationic Peptide Resistance Accompanying Mutations in <i>relA</i> and <i>mnaA</i> .<br>Microbiology Resource Announcements, 2020, 9, .  | 0.6 | 2         |
| 69 | Title is missing!. , 2020, 16, e1007608.                                                                                                                                                                                                                    |     | Ο         |
| 70 | Title is missing!. , 2020, 16, e1007608.                                                                                                                                                                                                                    |     | 0         |
| 71 | Title is missing!. , 2020, 16, e1007608.                                                                                                                                                                                                                    |     | 0         |
| 72 | Title is missing! 2020. 16. e1007608.                                                                                                                                                                                                                       |     | 0         |

0