Yuanlie Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4260911/publications.pdf

Version: 2024-02-01

257450 265206 1,790 42 48 24 citations h-index g-index papers 48 48 48 2078 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Superhydrophobic and Superoleophilic Porous Boron Nitride Nanosheet/Polyvinylidene Fluoride Composite Material for Oilâ€Polluted Water Cleanup. Advanced Materials Interfaces, 2015, 2, 1400267.	3.7	125
2	Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis. Advanced Functional Materials, 2018, 28, 1804860.	14.9	122
3	Superhydrophobic and Superoleophilic Boron Nitride Nanotubeâ€Coated Stainless Steel Meshes for Oil and Water Separation. Advanced Materials Interfaces, 2014, 1, 1300002.	3.7	107
4	Ball Milling of Hexagonal Boron Nitride Microflakes in Ammonia Fluoride Solution Gives Fluorinated Nanosheets That Serve as Effective Water-Dispersible Lubricant Additives. ACS Applied Nano Materials, 2019, 2, 3187-3195.	5.0	92
5	High-efficient production of SiC/SiO 2 core-shell nanowires for effective microwave absorption. Materials and Design, 2017, 121, 185-193.	7.0	81
6	Facile fabrication of boron and nitrogen co-doped carbon@Fe 2 O 3 /Fe 3 C/Fe nanoparticle decorated carbon nanotubes three-dimensional structure with excellent microwave absorption properties. Composites Part B: Engineering, 2018, 132, 141-150.	12.0	79
7	Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance. Composites Part A: Applied Science and Manufacturing, 2018, 112, 515-524.	7.6	77
8	Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption. Chemical Engineering Journal, 2019, 375, 121914.	12.7	71
9	Simultaneous production and functionalization of hexagonal boron nitride nanosheets by solvent-free mechanical exfoliation for superlubricant water-based lubricant additives. Npj 2D Materials and Applications, 2019, 3, .	7.9	68
10	Selective separation of oil and water with mesh membranes by capillarity. Advances in Colloid and Interface Science, 2016, 235, 46-55.	14.7	64
11	Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption. Journal of Colloid and Interface Science, 2021, 582, 177-186.	9.4	64
12	Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 7761-7766.	2.8	61
13	The effects of the hexagonal boron nitride nanoflake properties on the thermal conductivity of hexagonal boron nitride nanoflake/silicone rubber composites. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105629.	7.6	57
14	Mass fabrication and superior microwave absorption property of multilayer graphene/hexagonal boron nitride nanoparticle hybrids. Npj 2D Materials and Applications, 2019, 3, .	7.9	54
15	Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals. Applied Surface Science, 2017, 420, 858-867.	6.1	49
16	Quasiâ€Isotropically Thermal Conductive, Highly Transparent, Insulating and Superâ€Flexible Polymer Films Achieved by Cross Linked 2D Hexagonal Boron Nitride Nanosheets. Small, 2021, 17, e2101409.	10.0	49
17	Superlow friction of amorphous diamond-like carbon films in humid ambient enabled by hexagonal boron nitride nanosheet wrapped carbon nanoparticles. Chemical Engineering Journal, 2020, 402, 126206.	12.7	46
18	Facile fabrication of carbon microspheres decorated with B(OH)3 and \hat{l} ±-Fe2O3 nanoparticles: Superior microwave absorption. Journal of Colloid and Interface Science, 2017, 505, 402-409.	9.4	44

#	Article	IF	Citations
19	Facile fabrication of Hildewintera-colademonis-like hexagonal boron nitride/carbon nanotube composite having light weight and enhanced microwave absorption. Journal of Colloid and Interface Science, 2020, 564, 454-466.	9.4	43
20	Humidity sensing properties of single Au-decorated boron nitride nanotubes. Electrochemistry Communications, 2013, 30, 29-33.	4.7	40
21	Flexible and quasi-isotropically thermoconductive polyimide films by guided assembly of boron nitride nanoplate/boron nitride flakes for microelectronic application. Chemical Engineering Journal, 2022, 431, 133740.	12.7	37
22	Porous carbon nanotube/polyvinylidene fluoride composite material: Superhydrophobicity/superoleophilicity and tunability of electrical conductivity. Polymer, 2014, 55, 5616-5622.	3.8	36
23	Boron Nitride Nanosheet Dispersion at High Concentrations. ACS Applied Materials & Dispersion at High Concentration at High Con	8.0	30
24	Large-scale fabrication and utilization of novel hexagonal/turbostratic composite boron nitride nanosheets. Materials and Design, 2017, 120, 266-272.	7.0	26
25	Large scale fabrication of porous boron nitride microrods with tunable pore size for superior copper (II) ion adsorption. Ceramics International, 2019, 45, 6684-6692.	4.8	24
26	Selective separation of oil and water with special wettability mesh membranes. RSC Advances, $2017, 7, 12908-12915$.	3.6	22
27	Fabrication of highly conductive Ru/a-CNx:H composite films by anode deposit. Electrochemistry Communications, 2009, 11, 772-775.	4.7	21
28	Biocompatible porous boron nitride nano/microrods with ultrafast selective adsorption for dyes. Journal of Environmental Chemical Engineering, 2021, 9, 104797.	6.7	21
29	Quasi-isotropically thermoconductive, antiwear and insulating hierarchically assembled hexagonal boron nitride nanosheet/epoxy composites for efficient microelectronic cooling. Journal of Colloid and Interface Science, 2022, 608, 1907-1918.	9.4	21
30	Effect of specific cathode surface area on biofouling in an anaerobic electrochemical membrane bioreactor: Novel insights using high-speed video camera. Journal of Membrane Science, 2019, 577, 176-183.	8.2	20
31	Hexagonal boron nitride quantum dots: Properties, preparation and applications. Materials Today Chemistry, 2021, 20, 100425.	3.5	18
32	Facile fabrication of boron nitride nanosheets–amorphous carbon hybrid film for optoelectronic applications. RSC Advances, 2015, 5, 19236-19240.	3.6	16
33	First-principles insights of electronic and optical properties of F-doped hexagonal boron nitride nanosheets for photo-catalytic water splitting. Europhysics Letters, 2019, 127, 67003.	2.0	16
34	Regulating the electrical conductivity of hexagonal boron nitride nanosheets with excellent tribological performance for micro and nano electromechanical system applications. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114045.	2.7	13
35	Fabrication of novel hydrophobic SiC/SiO2 bead-string like core-shell nanochains via a facile catalyst/template-free thermal chemical vapor deposition process. Materials Chemistry and Physics, 2018, 217, 111-116.	4.0	12
36	Ultrafast electrodeposition of amorphous carbon nitride films from fullerene derivative. Electrochemistry Communications, 2010, 12, 390-393.	4.7	10

#	Article	IF	CITATIONS
37	Controllable fabrication of lightweight carbon with hierarchically hollow structure for enhanced microwave absorption. Diamond and Related Materials, 2021, 113, 108285.	3.9	10
38	Rich activated edges of hexagonal boron nitride flakes in-situ triggered by nickel nanoparticles to achieve efficient reduction of friction and wear. Composites Part B: Engineering, 2022, 234, 109710.	12.0	9
39	The chemical composition and bonding structure of amorphous hydrogenated carbon nitride film on aluminum surface deposited by electrodeposition. Surface and Interface Analysis, 2011, 43, 823-826.	1.8	6
40	Reduction of interlayer friction between bilayer hexagonal boron nitride nanosheets induced by electron redistribution. Journal of Applied Physics, 2019, 126, 035104.	2.5	6
41	Superhydrophobicity of polyvinylidene fluoride induced by integrating liquid-exfoliated hexagonal boron nitride nanosheets. High Performance Polymers, 2020, 32, 73-82.	1.8	6
42	Water-icing-triggered scalable and controllable exfoliation of hexagonal boron nitride nanosheets. Cell Reports Physical Science, 2022, 3, 100941.	5.6	6
43	High Loading Capacity and Wear Resistance of Graphene Oxide/Organic Molecule Assembled Multilayer Film. Frontiers in Chemistry, 2021, 9, 740140.	3.6	5
44	Friction Behavior and Structural Evolution of Hexagonal Boron Nitride: A Relation to Environmental Molecules Containing â^'OH Functional Group. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19043-19055.	8.0	4
45	"Chemical Blowing―of Sausageâ€Like Carbon Nanotubes with Oriented Grapheneâ€Layer Walls. ChemNanoMat, 2016, 2, 856-860.	2.8	2
46	A Facile Strategy for the Functionalization of Boron Nitride Nanotubes with Pd Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-5.	2.7	0
47	Nanostructured Surfaces, Coatings, and Films 2014. Journal of Nanomaterials, 2015, 2015, 1-2.	2.7	0
48	Two dimensional cubic boron nitride nanosheets converted from hexagonal boron nitride bilayers: electrical conductivity, magnetism and visible absorption properties. Chinese Journal of Physics, 2020, 66, 534-542.	3.9	0