John Orban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4260694/publications.pdf Version: 2024-02-01

IOHN OPRAN

#	Article	IF	CITATIONS
1	Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. Biophysics Reviews, 2022, 3, .	2.7	15
2	Engineering subtilisin proteases that specifically degrade active RAS. Communications Biology, 2021, 4, 299.	4.4	10
3	Protein conformational dynamics and phenotypic switching. Biophysical Reviews, 2021, 13, 1127-1138.	3.2	9
4	The structural basis of T-cell receptor (TCR) activation: An enduring enigma. Journal of Biological Chemistry, 2020, 295, 914-925.	3.4	58
5	A Non-genetic Mechanism Involving the Integrin β4/Paxillin Axis Contributes to Chemoresistance in Lung Cancer. IScience, 2020, 23, 101496.	4.1	27
6	Peptide–MHC Binding Reveals Conserved Allosteric Sites in MHC Class I- and Class II-Restricted T Cell Receptors (TCRs). Journal of Molecular Biology, 2020, 432, 166697.	4.2	12
7	The structural basis of T-cell receptor (TCR) activation: An enduring enigma. Journal of Biological Chemistry, 2020, 295, 914-925.	3.4	64
8	Structural and Dynamical Order of a Disordered Protein: Molecular Insights into Conformational Switching of PAGE4 at the Systems Level. Biomolecules, 2019, 9, 77.	4.0	19
9	Prostate-Associated Gene 4 (PAGE4): Leveraging the Conformational Dynamics of a Dancing Protein Cloud as a Therapeutic Target. Journal of Clinical Medicine, 2018, 7, 156.	2.4	10
10	Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. Frontiers in Oncology, 2018, 8, 50.	2.8	122
11	Peptide–MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC- and CD3-binding sites. Journal of Biological Chemistry, 2018, 293, 15991-16005.	3.4	45
12	Structural metamorphism and polymorphism in proteins on the brink of thermodynamic stability. Protein Science, 2018, 27, 1557-1567.	7.6	34
13	PAGE4 and Conformational Switching: Insights from Molecular Dynamics Simulations and Implications for Prostate Cancer. Journal of Molecular Biology, 2018, 430, 2422-2438.	4.2	36
14	Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2644-E2653.	7.1	72
15	Prostate-associated gene 4 (PAGE4), an intrinsically disordered cancer/testis antigen, is a novel therapeutic target for prostate cancer. Asian Journal of Andrology, 2016, 18, 695.	1.6	19
16	Subdomain Interactions Foster the Design of Two Protein Pairs withÂâ^1⁄480%ÂSequence Identity but Different Folds. Biophysical Journal, 2015, 108, 154-162.	0.5	24
17	Identification of the Docking Site for CD3 on the T Cell Receptor Î ² Chain by Solution NMR. Journal of Biological Chemistry, 2015, 290, 19796-19805.	3.4	36
18	Phosphorylation-induced Conformational Ensemble Switching in an Intrinsically Disordered Cancer/Testis Antigen. Journal of Biological Chemistry, 2015, 290, 25090-25102.	3.4	55

John Orban

#	Article	IF	CITATIONS
19	Implications of protein fold switching. Current Opinion in Structural Biology, 2013, 23, 314-316.	5.7	17
20	Solution NMR structure of a sheddase inhibitor prodomain from the malarial parasite <i>Plasmodium falciparum</i> . Proteins: Structure, Function and Bioinformatics, 2012, 80, 2810-2817.	2.6	7
21	Mutational Tipping Points for Switching Protein Folds and Functions. Structure, 2012, 20, 283-291.	3.3	87
22	The Cancer/Testis Antigen Prostate-associated Gene 4 (PAGE4) Is a Highly Intrinsically Disordered Protein. Journal of Biological Chemistry, 2011, 286, 13985-13994.	3.4	58
23	Proteins that switch folds. Current Opinion in Structural Biology, 2010, 20, 482-488.	5.7	170
24	A minimal sequence code for switching protein structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21149-21154.	7.1	219
25	NMR structures of two designed proteins with high sequence identity but different fold and function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14412-14417.	7.1	98
26	The design and characterization of two proteins with 88% sequence identity but different structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11963-11968.	7.1	165
27	Hydrogenâ^'Deuterium Exchange in Free and Prodomain-Complexed Subtilisinâ€. Biochemistry, 2007, 46, 652-658.	2.5	13
28	An artificially evolved albumin binding module facilitates chemical shift epitope mapping of GA domain interactions with phylogenetically diverse albumins. Protein Science, 2007, 16, 1490-1494.	7.6	14
29	Structure, Dynamics, and Stability Variation in Bacterial Albumin Binding Modules:Â Implications for Species Specificityâ€,â€j. Biochemistry, 2006, 45, 10102-10109.	2.5	36
30	Using Offset Recombinant Polymerase Chain Reaction To Identify Functional Determinants in a Common Family of Bacterial Albumin Binding Domains. Biochemistry, 2006, 45, 3263-3271.	2.5	19
31	Directed Evolution of Highly Homologous Proteins with Different Folds by Phage Display:Â Implications for the Protein Folding Codeâ€. Biochemistry, 2005, 44, 14045-14054.	2.5	46
32	Solution NMR Structures of IgG Binding Domains with Artificially Evolved High Levels of Sequence Identity but Different Foldsâ€,‡. Biochemistry, 2005, 44, 14055-14061.	2.5	29
33	Solution Structure of the Pro-hormone Convertase 1 Pro-domain from Mus musculus. Journal of Molecular Biology, 2002, 320, 801-812.	4.2	43
34	Stability and Global Fold of the Mouse Prohormone Convertase 1 Pro-Domainâ€. Biochemistry, 2001, 40, 5488-5495.	2.5	23
35	Assessment of Stability Differences in the Protein G B1 and B2 Domains From Hydrogen-Deuterium Exchange: Comparison with Calorimetric Data. Biochemistry, 1995, 34, 15291-15300.	2.5	58
36	Synthesis of backbone deuterium labelled [r(CGCGAAUUCGCG)]2and HPLC purification of synthetic RNA. Nucleic Acids Research, 1992, 20, 5131-5136.	14.5	10