List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4260670/publications.pdf Version: 2024-02-01

MENC CUI

#	Article	lF	CITATIONS
1	Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer-Aided Drug Design, 2011, 7, 146-157.	1.2	1,955
2	Allosteric signaling through an mGlu2 and 5-HT _{2A} heteromeric receptor complex and its potential contribution to schizophrenia. Science Signaling, 2016, 9, ra5.	3.6	91
3	PIP ₂ controls voltage-sensor movement and pore opening of Kv channels through the S4–S5 linker. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2399-408.	7.1	84
4	Phosphoinositide Control of Membrane Protein Function: A Frontier Led by Studies on Ion Channels. Annual Review of Physiology, 2015, 77, 81-104.	13.1	84
5	Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. International Journal of Pharmaceutics, 2015, 489, 277-284.	5.2	67
6	Molecular Mechanism of Species-Dependent Sweet Taste toward Artificial Sweeteners. Journal of Neuroscience, 2011, 31, 11070-11076.	3.6	64
7	Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor. Chemical Senses, 2015, 40, 577-586.	2.0	64
8	Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex. Nature Chemical Biology, 2014, 10, 753-759.	8.0	59
9	The Molecular Mechanism by which PIP2 Opens the Intracellular G-Loop Gate of a Kir3.1 Channel. Biophysical Journal, 2012, 102, 2049-2059.	0.5	53
10	Building KCNQ1/KCNE1 Channel Models and Probing their Interactions by Molecular-Dynamics Simulations. Biophysical Journal, 2013, 105, 2461-2473.	0.5	48
11	Competition of calcified calmodulin N lobe and PIP ₂ to an LQT mutation site in Kv7.1 channel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E869-E878.	7.1	46
12	Structural Determinants of Phosphatidylinositol 4,5-Bisphosphate (PIP2) Regulation of BK Channel Activity through the RCK1 Ca2+ Coordination Site. Journal of Biological Chemistry, 2014, 289, 18860-18872.	3.4	37
13	Cryoelectron Microscopy Structures of AdeB Illuminate Mechanisms of Simultaneous Binding and Exporting of Substrates. MBio, 2021, 12, .	4.1	37
14	Prediction of protein loop structures using a local move Monte Carlo approach and a grid-based force field. Protein Engineering, Design and Selection, 2008, 21, 729-735.	2.1	35
15	Ca ²⁺ -Calmodulin and PIP2 interactions at the proximal C-terminus of Kv7 channels. Channels, 2017, 11, 686-695.	2.8	28
16	Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. PLoS Biology, 2021, 19, e3001370.	5.6	27
17	The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel. Scientific Reports, 2016, 6, 29399.	3.3	26
18	On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. Journal of Biological Chemistry, 2019, 294, 18934-18948.	3.4	26

#	Article	IF	CITATIONS
19	Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins. Biochemical and Biophysical Research Communications, 2012, 427, 431-437.	2.1	24
20	Structural insights into the potency of SK channel positive modulators. Scientific Reports, 2017, 7, 17178.	3.3	22
21	Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handbook of Experimental Pharmacology, 2021, 267, 277-356.	1.8	21
22	Unifying Mechanism of Controlling Kir3 Channel Activity by G Proteins and Phosphoinositides. International Review of Neurobiology, 2015, 123, 1-26.	2.0	20
23	<i>N</i> -geranyl cyclopropyl-carboximide modulates salty and umami taste in humans and animal models. Journal of Neurophysiology, 2013, 109, 1078-1090.	1.8	18
24	Targeting the Small- and Intermediate-Conductance Ca ²⁺ -Activated Potassium Channels: The Drug-Binding Pocket at the Channel/Calmodulin Interface. NeuroSignals, 2014, 22, 65-78.	0.9	18
25	Computational Approaches for Modeling GPCR Dimerization. Current Pharmaceutical Biotechnology, 2014, 15, 996-1006.	1.6	18
26	The Cytosolic GH Loop Regulates the Phosphatidylinositol 4,5-Bisphosphate-induced Gating Kinetics of Kir2 Channels. Journal of Biological Chemistry, 2012, 287, 42278-42287.	3.4	17
27	Current Progress in Understanding the Structure and Function of Sweet Taste Receptor. Journal of Molecular Neuroscience, 2021, 71, 234-244.	2.3	17
28	Probing the structural basis for differential KCNQ1 modulation by KCNE1 and KCNE2. Journal of General Physiology, 2012, 140, 653-669.	1.9	16
29	Prevalence of Kaposi's sarcoma-associated herpesvirus in Uygur and Han populations from the Urumqi and Kashgar regions of Xinjiang, China. Virologica Sinica, 2017, 32, 396-403.	3.0	16
30	Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism. European Journal of Pharmacology, 2017, 800, 40-47.	3.5	15
31	G Protein-Coupled Receptor Signaling to Kir Channels in Xenopus Oocytes. Current Pharmaceutical Biotechnology, 2014, 15, 987-995.	1.6	15
32	Activation of specific bitter taste receptors by olive oil phenolics and secoiridoids. Scientific Reports, 2021, 11, 22340.	3.3	15
33	Synthesis of novel 5-substituted-2-aminotetralin analogs: 5-HT1A and 5-HT7 G protein-coupled receptor affinity, 3D-QSAR and molecular modeling. Bioorganic and Medicinal Chemistry, 2020, 28, 115262.	3.0	14
34	High-potency block of Kir4.1 channels by pentamidine: Molecular basis. European Journal of Pharmacology, 2017, 815, 56-63.	3.5	13
35	A V-to-F substitution in SK2 channels causes Ca2+ hypersensitivity and improves locomotion in a C. elegans ALS model. Scientific Reports, 2018, 8, 10749.	3.3	13
36	Hydrophobic interactions between the HA helix and S4‣5 linker modulate apparent Ca ²⁺ sensitivity of SK2 channels. Acta Physiologica, 2021, 231, e13552.	3.8	13

#	Article	IF	CITATIONS
37	Mutations in Nature Conferred a High Affinity Phosphatidylinositol 4,5-Bisphosphate-binding Site in Vertebrate Inwardly Rectifying Potassium Channels. Journal of Biological Chemistry, 2015, 290, 16517-16529.	3.4	12
38	Molecular overlap in the regulation of SK channels by small molecules and phosphoinositides. Science Advances, 2015, 1, e1500008.	10.3	11
39	Inhibition of Kir4.1 potassium channels by quinacrine. Brain Research, 2017, 1663, 87-94.	2.2	11
40	A novel small-molecule selective activator of homomeric GIRK4 channels. Journal of Biological Chemistry, 2022, 298, 102009.	3.4	11
41	Modeling dimerizations of transmembrane proteins using Brownian dynamics simulations. Journal of Computer-Aided Molecular Design, 2008, 22, 553-561.	2.9	9
42	Subtypeâ€selective positive modulation of K Ca 2 channels depends on the HA/HB helices. British Journal of Pharmacology, 2021, , .	5.4	9
43	A molecular switch controls the impact of cholesterol on a Kir channel. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2109431119.	7.1	9
44	Kaposi's sarcoma-associated herpesvirus seropositivity is associated with type 2 diabetes mellitus: A case–control study in Xinjiang, China. International Journal of Infectious Diseases, 2019, 80, 73-79.	3.3	8
45	<i>In vitro</i> and <i>in silico</i> characterization of the inhibition of Kir4.1 channels by aminoglycoside antibiotics. British Journal of Pharmacology, 2020, 177, 4548-4560.	5.4	8
46	Predicting Protein Interactions by Brownian Dynamics Simulations. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-11.	3.0	7
47	SOX5 Regulates Cell Proliferation, Apoptosis, Migration and Invasion in KSHV-Infected Cells. Virologica Sinica, 2020, 36, 449-457.	3.0	7
48	Protein Binding Pocket Optimization for Virtual High-Throughput Screening (vHTS) Drug Discovery. ACS Omega, 2020, 5, 14297-14307.	3.5	7
49	A benzopyran with antiarrhythmic activity is an inhibitor of Kir3.1-containing potassium channels. Journal of Biological Chemistry, 2021, 296, 100535.	3.4	7
50	A new class of 5â€HT _{2A} /5â€HT _{2C} receptor inverse agonists: Synthesis, molecular modeling, <i>in vitro</i> and <i>in vivo</i> pharmacology of novel 2â€aminotetralins. British Journal of Pharmacology, 2022, 179, 2610-2630.	5.4	7
51	Channelopathy-causing mutations in the S45A/S45B and HA/HB helices of KCa2.3 and KCa3.1 channels alter their apparent Ca2+ sensitivity. Cell Calcium, 2022, 102, 102538.	2.4	7
52	Molecular determinants of Kv7.1/KCNE1 channel inhibition by amitriptyline. Biochemical Pharmacology, 2018, 152, 264-271.	4.4	4
53	Prediction of Protein Loop Structures Using a Local Move Monte Carlo Approach and a Grid-Based Force Field. Biophysical Journal, 2009, 96, 583a.	0.5	2
54	Multiple interaction modes between saccharin and sweet taste receptors determine a speciesâ€dependent response to saccharin. FEBS Open Bio, 2022, 12, 494-499.	2.3	2

#	Article	IF	CITATIONS
55	Modeling KCNQ1 Channel and KCNE1 Interactions. Biophysical Journal, 2011, 100, 544a.	0.5	0
56	Molecular Dynamics Simulations of PIP2-Driven Kir Channel Activation. Biophysical Journal, 2011, 100, 431a.	0.5	0
57	KCNE2 uses More Domains than KCNE1 to Modulate KCNQ1 Channel Function. Biophysical Journal, 2011, 100, 426a-427a.	0.5	0
58	Simulations of the Helix Bundle Crossing Gate Opening in Kir Channels. Biophysical Journal, 2013, 104, 129a.	0.5	0
59	Identification of a Novel PIP2 Interaction Site and its Allosteric Regulation by the RCK1 Site Associated with Ca2+ Coordination in Slo1 Channels. Biophysical Journal, 2013, 104, 357a.	0.5	0
60	Calcium and Pip2 Interplay Regulates BK Channel Activity via the RCK1 Gating Ring. Biophysical Journal, 2014, 106, 749a.	0.5	0
61	Pip2-Channel Interaction as a Critical Element in Regulation of SK Channel Activity. Biophysical Journal, 2014, 106, 749a.	0.5	0
62	A Novel Site of Competitive PIP2 and Calmodulin Interaction to KCNQ1 C-Terminus Helix B is Crucial for IKs Channel Activity. Biophysical Journal, 2016, 110, 186a.	0.5	0
63	Positive Allosteric Modulators Induced Conformational Changes in the Metabotropic Glutamate Receptor 2 - In Silico Predictions and Experimental Tests. Biophysical Journal, 2016, 110, 90a.	0.5	0
64	A Mutation in the Intrinsivally Disordered Fragment of SK2 Channel Confers Ca2+ Hypersensitivity. Biophysical Journal, 2018, 114, 128a.	0.5	0
65	Unnatural Amino Acid Receptor Incorporation as a Novel Photoaffinity Tool for GPCR Heteromer Signaling Studies. Biophysical Journal, 2020, 118, 95a-96a.	0.5	0
66	Photoaffinity Labeled Unnatural Amino Acid Crosslinking Stabilizes a Trans-Signaling Conformation between the D2-5HT2A Receptor Heteromer. Biophysical Journal, 2021, 120, 327a.	0.5	0
67	The Novel Small Molecule 3hi2one-G4 Selectively Activates Homomeric GIRK4 Channels. Biophysical Journal, 2021, 120, 203a.	0.5	0
68	Molecular Mechanism of the Potent Benzopyran-G1 Blocker of Heteromeric G-Protein Gated Potassium Channels. Biophysical Journal, 2021, 120, 203a.	0.5	0
69	Positive modulation of SKs channels by CyPPA depends on the HA/HB helices. Biophysical Journal, 2022, 121, 389a.	0.5	0
70	Unnatural amino acid receptor incorporation as a photoaffinity tool for GPCR heteromer signaling studies. Biophysical Journal, 2022, 121, 85a-86a.	0.5	0