Susan E Habas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4260060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shape Control of Colloidal Metal Nanocrystals. Small, 2008, 4, 310-325.	10.0	2,205
2	Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6, 692-697.	27.5	1,156
3	Morphological Control of Catalytically Active Platinum Nanocrystals. Angewandte Chemie - International Edition, 2006, 45, 7824-7828.	13.8	608
4	Nanocrystal bilayer for tandem catalysis. Nature Chemistry, 2011, 3, 372-376.	13.6	466
5	Probing the Interaction of Poly(vinylpyrrolidone) with Platinum Nanocrystals by UVâ^'Raman and FTIR. Journal of Physical Chemistry B, 2006, 110, 23052-23059.	2.6	453
6	Low-Cost Inorganic Solar Cells: From Ink To Printed Device. Chemical Reviews, 2010, 110, 6571-6594.	47.7	412
7	Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid. Journal of the American Chemical Society, 2008, 130, 5406-5407.	13.7	399
8	Selective Growth of Metal and Binary Metal Tips on CdS Nanorods. Journal of the American Chemical Society, 2008, 130, 3294-3295.	13.7	313
9	Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation. Nano Letters, 2008, 8, 2027-2034.	9.1	254
10	Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes. Journal of the American Chemical Society, 2008, 130, 5868-5869.	13.7	226
11	In situ spectroscopic detection ofSMSI effect in a Ni/CeO ₂ system: hydrogen-induced burial and dig out of metallic nickel. Chemical Communications, 2010, 46, 1097-1099.	4.1	140
12	One-step Polyol Synthesis and Langmuirâ^'Blodgett Monolayer Formation of Size-tunable Monodisperse Rhodium Nanocrystals with Catalytically Active (111) Surface Structures. Journal of Physical Chemistry C, 2007, 111, 12243-12253.	3.1	136
13	Rhodium Nanoparticles from Cluster Seeds:Â Control of Size and Shape by Precursor Addition Rate. Nano Letters, 2007, 7, 785-790.	9.1	114
14	An Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO ₂ Hydrogenation. Journal of the American Chemical Society, 2020, 142, 1010-1019.	13.7	79
15	Influence of Size, Shape, and Surface Coating on the Stability of Aqueous Suspensions of CdSe Nanoparticles. Chemistry of Materials, 2010, 22, 5251-5257.	6.7	74
16	Silver Ion Mediated Shape Control of Platinum Nanoparticles:  Removal of Silver by Selective Etching Leads to Increased Catalytic Activity. Journal of Physical Chemistry C, 2008, 112, 4797-4804.	3.1	71
17	Near-Monodisperse Niâ^'Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H ₂ Generation. Journal of Physical Chemistry C, 2008, 112, 12092-12095.	3.1	67
18	Interfacing Metal Nanoparticles with Semiconductor Nanowires. Chemistry of Materials, 2009, 21, 3662-3667.	6.7	62

SUSAN E HABAS

#	Article	IF	CITATIONS
19	A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts. Chemistry of Materials, 2015, 27, 7580-7592.	6.7	60
20	Carbon Monoxide Adsorption and Oxidation on Monolayer Films of Cubic Platinum Nanoparticles Investigated by Infraredâ^'Visible Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 15920-15925.	2.6	58
21	Synthesis of Lead Chalcogenide Alloy and Core–Shell Nanowires. Angewandte Chemie - International Edition, 2008, 47, 5605-5608.	13.8	55
22	High-Throughput Continuous Flow Synthesis of Nickel Nanoparticles for the Catalytic Hydrodeoxygenation of Guaiacol. ACS Sustainable Chemistry and Engineering, 2017, 5, 632-639.	6.7	50
23	Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions. Topics in Catalysis, 2016, 59, 124-137.	2.8	42
24	Surface Chemistry Exchange of Alloyed Germanium Nanocrystals: A Pathway Toward Conductive Group IV Nanocrystal Films. Journal of Physical Chemistry Letters, 2013, 4, 416-421.	4.6	39
25	Conversion of Dimethyl Ether to 2,2,3-Trimethylbutane over a Cu/BEA Catalyst: Role of Cu Sites in Hydrogen Incorporation. ACS Catalysis, 2015, 5, 1794-1803.	11.2	37
26	Single-Step Conversion of Ethanol to <i>n</i> -Butene over Ag-ZrO ₂ /SiO ₂ Catalysts. ACS Catalysis, 2020, 10, 10602-10613.	11.2	34
27	Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells. Bioresource Technology, 2019, 293, 122067.	9.6	32
28	Probing Compositional Variation within Hybrid Nanostructures. ACS Nano, 2009, 3, 3369-3376.	14.6	27
29	Controlled Design of Phase- and Size-Tunable Monodisperse Ni ₂ P Nanoparticles in a Phosphonium-Based Ionic Liquid through Response Surface Methodology. Chemistry of Materials, 2019, 31, 1552-1560.	6.7	25
30	Dehydrogenative Coupling of Methanol for the Gas-Phase, One-Step Synthesis of Dimethoxymethane over Supported Copper Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12151-12160.	6.7	22
31	An investigation into support cooperativity for the deoxygenation of guaiacol over nanoparticle Ni and Rh ₂ P. Catalysis Science and Technology, 2017, 7, 2954-2966.	4.1	21
32	Controlled Synthesis of Transition Metal Phosphide Nanoparticles to Establish Composition-Dependent Trends in Electrocatalytic Activity. Chemistry of Materials, 2022, 34, 6255-6267.	6.7	17
33	Electrocatalytic CO ₂ Reduction over Cu ₃ P Nanoparticles Generated via a Molecular Precursor Route. ACS Applied Energy Materials, 2020, 3, 10435-10446.	5.1	16
34	Deactivation by Potassium Accumulation on a Pt/TiO ₂ Bifunctional Catalyst for Biomass Catalytic Fast Pyrolysis. ACS Catalysis, 2022, 12, 465-480.	11.2	15
35	Transitioning rationally designed catalytic materials to real "working―catalysts produced at commercial scale: nanoparticle materials. Catalysis, 0, , 213-281.	1.0	12

Direct write metallization for photovoltaic cells and scaling thereof., 2010, , .

SUSAN E HABAS

#	Article	IF	CITATIONS
37	Throughput Optimization of Molybdenum Carbide Nanoparticle Catalysts in a Continuous Flow Reactor Using Design of Experiments. ACS Applied Nano Materials, 2022, 5, 1966-1975.	5.0	10
38	Spectroscopic insight into carbon speciation and removal on a Cu/BEA catalyst during renewable high-octane hydrocarbon synthesis. Applied Catalysis B: Environmental, 2021, 287, 119925.	20.2	9
39	Singleâ€step Conversion of Methyl Ethyl Ketone to Olefins over Zn x Zr y O z Catalysts in Water. ChemCatChem, 2019, 11, 3393-3400.	3.7	7
40	Catalyst design to direct high-octane gasoline fuel properties for improved engine efficiency. Applied Catalysis B: Environmental, 2022, 301, 120801.	20.2	7
41	<i>In situ</i> S/TEM Reactions of Ag/ZrO ₂ /SBA-16 Catalysts for Single-Step Conversion of Ethanol to Butadiene. Microscopy and Microanalysis, 2019, 25, 1460-1461.	0.4	4
42	Novel hybrid nanostructures for photonic and energy applications. Proceedings of SPIE, 2008, , .	0.8	1
43	Field assisted simultaneous synthesis and transfer FASST [®] method used in conjunction with liquid precursors to produce CIGS solar cells. , 2010, , .		1
44	In Situ S/TEM Reduction Reaction of Ni-Mo2C Catalyst for Biomass Conversion. Microscopy and Microanalysis, 2018, 24, 322-323.	0.4	1
45	Singleâ€step Conversion of Methyl Ethyl Ketone to Olefins over Zn x Zr y O z Catalysts in Water. ChemCatChem, 2019, 11, 3340-3340.	3.7	1
46	High-Efficiency Low-Cost Photovoltaic Modules Based on CIGS Thin Films from Solution Precursors. Materials Research Society Symposia Proceedings, 2010, 1247, 1.	0.1	0
47	Solution deposited precursors and rapid optical processing used in the production of CIGS solar cells. , 2011, , .		0
48	In situ S/TEM Reduction Reaction of Calcined Cu/BEA-zeolite Catalyst. Microscopy and Microanalysis, 2017, 23, 944-945.	0.4	0
49	Multi-scale Characterization Study Enabling Deactivation Mechanism in Formed Zeolite Catalyst. Microscopy and Microanalysis, 2020, 26, 1270-1271.	0.4	0
50	Performing In Situ Closed-Cell Gas Reactions in the Transmission Electron Microscope. Journal of Visualized Experiments, 2021, , .	0.3	0
51	Practical Aspects of Performing Quantitive EELS Measurements of Gas Compositions in Closed-Cell Gas Reaction S/TEM. Microscopy and Microanalysis, 2021, 27, 796-798.	0.4	0