## Jean-Francois Lutz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4259775/publications.pdf

Version: 2024-02-01

200 papers

21,353 citations

67 h-index

13827

9311 143 g-index

233 all docs

233 docs citations

times ranked

233

12471 citing authors

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multistep Growth "Polymerizations― Macromolecular Chemistry and Physics, 2022, 223, 2100368.                                                                                                                             | 1.1 | 10        |
| 2  | Precise Alkoxyamine Design to Enable Automated Tandem Mass Spectrometry Sequencing of Digital Poly(phosphodiester)s. Angewandte Chemie, 2021, 133, 930-939.                                                              | 1.6 | 2         |
| 3  | Precise Alkoxyamine Design to Enable Automated Tandem Mass Spectrometry Sequencing of Digital Poly(phosphodiester)s. Angewandte Chemie - International Edition, 2021, 60, 917-926.                                       | 7.2 | 14        |
| 4  | Chemical conjugation of nucleic acid aptamers and synthetic polymers. Polymer Chemistry, 2021, 12, 3498-3509.                                                                                                            | 1.9 | 18        |
| 5  | Synthesis and sequencing of informational poly(amino phosphodiester)s. Polymer Chemistry, 2021, 12, 5279-5282.                                                                                                           | 1.9 | 7         |
| 6  | Desorption Electrospray Ionization (DESI) of Digital Polymers: Direct Tandem Mass Spectrometry Decoding and Imaging from Materials Surfaces. Advanced Materials Technologies, 2021, 6, 2001088.                          | 3.0 | 14        |
| 7  | Decoding Digital Information Stored in Polymer by Nanopore. Biophysical Journal, 2021, 120, 98a.                                                                                                                         | 0.2 | 1         |
| 8  | Chain Entropy Beats Hydrogen Bonds to Unfold and Thread Dialcohol Phosphates inside Cyanostar Macrocycles To Form [3]Pseudorotaxanes. Journal of Organic Chemistry, 2021, 86, 4532-4546.                                 | 1.7 | 10        |
| 9  | Adsorption of phenylalanine-rich sequence-defined oligomers onto Kevlar fibers for fiber-reinforced polyolefin composite materials. Polymer, 2021, 217, 123465.                                                          | 1.8 | 9         |
| 10 | Design of Abiological Digital Poly(phosphodiester)s. Accounts of Chemical Research, 2021, 54, 1791-1800.                                                                                                                 | 7.6 | 25        |
| 11 | Large Sequence-Defined Supramolecules Obtained by the DNA-Guided Assembly of Biohybrid Poly(phosphodiester)s. Macromolecules, 2021, 54, 3423-3429.                                                                       | 2.2 | 12        |
| 12 | Storing the portrait of Antoine de Lavoisier in a single macromolecule. Comptes Rendus Chimie, 2021, 24, 69-76.                                                                                                          | 0.2 | 10        |
| 13 | Precisely Defined Aptamer- <i>b</i> -Poly(phosphodiester) Conjugates Prepared by Phosphoramidite Polymer Chemistry. ACS Macro Letters, 2021, 10, 481-485.                                                                | 2.3 | 12        |
| 14 | Molecular Bottle Brushes with Positioned Selenols: Extending the Toolbox of Oxidative Single Polymer Chain Folding with Conformation Analysis by Atomic Force Microscopy. Journal of Polymer Science, 2020, 58, 154-162. | 2.0 | 4         |
| 15 | Professor Krzysztof Matyjaszewski—A Pioneer in Polymer Science. Journal of Polymer Science, 2020, 58, 13-13.                                                                                                             | 2.0 | O         |
| 16 | Can Life Emerge from Synthetic Polymers?. Israel Journal of Chemistry, 2020, 60, 151-159.                                                                                                                                | 1.0 | 16        |
| 17 | Promoting carboxylate salts in the ESI source to simplify positive mode MS/MS sequencing of acid-terminated encoded polyurethanes. International Journal of Mass Spectrometry, 2020, 448, 116271.                        | 0.7 | 5         |
| 18 | Damage and Repair in Informational Poly( <i>N</i> â€substituted urethane)s. Angewandte Chemie -<br>International Edition, 2020, 59, 20390-20393.                                                                         | 7.2 | 22        |

| #  | Article                                                                                                                                                                                                                  | IF       | Citations    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 19 | The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.                                                                                                                         | 1.1      | 69           |
| 20 | Damage and Repair in Informational Poly( N â€substituted urethane)s. Angewandte Chemie, 2020, 132, 20570-20573.                                                                                                          | 1.6      | 4            |
| 21 | Aerolysin nanopores decode digital information stored in tailored macromolecular analytes. Science Advances, 2020, 6, .                                                                                                  | 4.7      | 57           |
| 22 | High-Capacity Digital Polymers: Storing Images in Single Molecules. Macromolecules, 2020, 53, 4022-4029.                                                                                                                 | 2.2      | 39           |
| 23 | Optimal conditions for tandem mass spectrometric sequencing of informationâ€containing nitrogenâ€substituted polyurethanes. Rapid Communications in Mass Spectrometry, 2020, 34, e8815.                                  | 0.7      | 6            |
| 24 | 100th Anniversary of Macromolecular Science Viewpoint: Toward Artificial Life-Supporting Macromolecules. ACS Macro Letters, 2020, 9, 185-189.                                                                            | 2.3      | 40           |
| 25 | Molecular Bottle Brushes with Positioned Selenols: Extending the Toolbox of Oxidative Single Polymer Chain Folding with Conformation Analysis by Atomic Force Microscopy. Journal of Polymer Science, 2020, 58, 154-162. | 2.0      | 0            |
| 26 | Selective Bond Cleavage in Informational Poly(Alkoxyamine Phosphodiester)s. Macromolecular Rapid Communications, 2020, 41, e2000215.                                                                                     | 2.0      | 5            |
| 27 | Efficient Protocol for the Synthesis of " <i>N</i> -Coded―Oligo- and Poly( <i>N</i> -Substituted) Tj ETQq1 1                                                                                                             | 0.784314 | rgBT/Overloc |
| 28 | Photo-editable macromolecular information. Nature Communications, 2019, 10, 3774.                                                                                                                                        | 5.8      | 51           |
| 29 | About the Crystallization of Abiotic Coded Matter. ACS Macro Letters, 2019, 8, 779-782.                                                                                                                                  | 2.3      | 15           |
| 30 | Revealing Data Encrypted in Sequence-Controlled Poly(Alkoxyamine Phosphodiester)s by Combining Ion Mobility with Tandem Mass Spectrometry. Analytical Chemistry, 2019, 91, 7266-7272.                                    | 3.2      | 20           |
| 31 | Programmable Thermoresponsive Micelle-Inspired Polymer Ionic Liquids as Molecular Shuttles for Anionic Payloads. Macromolecules, 2019, 52, 9672-9681.                                                                    | 2.2      | 13           |
| 32 | Universal Soluble Polymer Supports with Precisely Controlled Loading Capacity for Sequenceâ€Defined Oligomer Synthesis. Journal of Polymer Science Part A, 2019, 57, 403-410.                                            | 2.5      | 7            |
| 33 | Homolysis of C ON bonds during MS/MS of oligo(alkoxyamine amide) protomers. International Journal of Mass Spectrometry, 2019, 438, 29-35.                                                                                | 0.7      | 1            |
| 34 | Cleavable Binary Dyads: Simplifying Data Extraction and Increasing Storage Density in Digital Polymers. Angewandte Chemie, 2018, 130, 6374-6377.                                                                         | 1.6      | 14           |
| 35 | Synthesis of Macromolecules Containing Phenylalanine and Aliphatic Building Blocks.<br>Macromolecular Rapid Communications, 2018, 39, e1700764.                                                                          | 2.0      | 4            |
| 36 | Translocation of Sequence-Controlled Synthetic Polymers through Biological Nanopores. Biophysical Journal, 2018, 114, 182a.                                                                                              | 0.2      | 0            |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cleavable Binary Dyads: Simplifying Data Extraction and Increasing Storage Density in Digital Polymers. Angewandte Chemie - International Edition, 2018, 57, 6266-6269.                                                 | 7.2 | 44        |
| 38 | Sequences of Sequences: Spatial Organization of Coded Matter through Layerâ€byâ€Layer Assembly of Digital Polymers. Angewandte Chemie - International Edition, 2018, 57, 15817-15821.                                   | 7.2 | 32        |
| 39 | Sequences of Sequences: Spatial Organization of Coded Matter through Layerâ€byâ€Layer Assembly of Digital Polymers. Angewandte Chemie, 2018, 130, 16043-16047.                                                          | 1.6 | 11        |
| 40 | Abiotic Sequenceâ€Coded Oligomers as Efficient Inâ€Vivo Taggants for the Identification of Implanted Materials. Angewandte Chemie, 2018, 130, 10734-10738.                                                              | 1.6 | 12        |
| 41 | Convenient Graphical Visualization of Messages Encoded in Sequenceâ€Defined Synthetic Polymers<br>Using Kendrick Mass Defect Analysis of their MS/MS Data. Macromolecular Chemistry and Physics,<br>2018, 219, 1800173. | 1.1 | 5         |
| 42 | Abiotic Sequenceâ€Coded Oligomers as Efficient Inâ€Vivo Taggants for the Identification of Implanted Materials. Angewandte Chemie - International Edition, 2018, 57, 10574-10578.                                       | 7.2 | 48        |
| 43 | Catalyst: Being a Chemist in the Anthropocene. CheM, 2017, 2, 155-156.                                                                                                                                                  | 5.8 | 2         |
| 44 | Tuning Polymer-Protein Interaction with Salt. Biophysical Journal, 2017, 112, 457a.                                                                                                                                     | 0.2 | 0         |
| 45 | A Simple Postâ€Polymerization Modification Method for Controlling Sideâ€Chain Information in Digital Polymers. Angewandte Chemie - International Edition, 2017, 56, 7297-7301.                                          | 7.2 | 50        |
| 46 | Controlling the structure of sequenceâ€defined poly <b>(</b> phosphodiester)s for optimal MS/MS reading of digital information. Journal of Mass Spectrometry, 2017, 52, 788-798.                                        | 0.7 | 29        |
| 47 | MS/MS-Assisted Design of Sequence-Controlled Synthetic Polymers for Improved Reading of Encoded Information. Journal of the American Society for Mass Spectrometry, 2017, 28, 1149-1159.                                | 1.2 | 36        |
| 48 | Sequence-coded ATRP macroinitiators. Polymer Chemistry, 2017, 8, 4988-4991.                                                                                                                                             | 1.9 | 9         |
| 49 | Identification-Tagging of Methacrylate-Based Intraocular Implants Using Sequence Defined Polyurethane Barcodes. Advanced Functional Materials, 2017, 27, 1604595.                                                       | 7.8 | 53        |
| 50 | MS-DECODER: Milliseconds Sequencing of Coded Polymers. Macromolecules, 2017, 50, 8290-8296.                                                                                                                             | 2.2 | 43        |
| 51 | Mass spectrometry sequencing of long digital polymers facilitated by programmed inter-byte fragmentation. Nature Communications, 2017, 8, 967.                                                                          | 5.8 | 96        |
| 52 | 2D Sequenceâ€Coded Oligourethane Barcodes for Plastic Materials Labeling. Macromolecular Rapid Communications, 2017, 38, 1700426.                                                                                       | 2.0 | 43        |
| 53 | Negative mode MS/MS to read digital information encoded in sequence-defined oligo(urethane)s: A mechanistic study. International Journal of Mass Spectrometry, 2017, 421, 271-278.                                      | 0.7 | 17        |
| 54 | Eine einfache Methode der nachtrÄglichen Modifizierung zur Kontrolle der Seitenketteninformation digitaler Polymere. Angewandte Chemie, 2017, 129, 7403-7407.                                                           | 1.6 | 18        |

| #  | Article                                                                                                                                                                                                    | IF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Photocontrolled Synthesis of Abiotic Sequenceâ€Defined Oligo(Phosphodiester)s. Macromolecular Rapid Communications, 2017, 38, 1700651.                                                                     | 2.0  | 12        |
| 56 | Translocation of Precision Polymers through Biological Nanopores. Macromolecular Rapid Communications, 2017, 38, 1700680.                                                                                  | 2.0  | 27        |
| 57 | Defining the Field of Sequenceâ€Controlled Polymers. Macromolecular Rapid Communications, 2017, 38, 1700582.                                                                                               | 2.0  | 164       |
| 58 | Synthesis of oligoarylacetylenes with defined conjugated sequences using tailor-made soluble polymer supports. Chemical Communications, 2017, 53, 8312-8315.                                               | 2.2  | 20        |
| 59 | Euroâ€Sequences: Toward Nextâ€Gen Polymers. Macromolecular Rapid Communications, 2017, 38, 1700747.                                                                                                        | 2.0  | 0         |
| 60 | Chemoselective Synthesis of Uniform Sequence-Coded Polyurethanes and Their Use as Molecular Tags. CheM, 2016, 1, 114-126.                                                                                  | 5.8  | 108       |
| 61 | Model-Based Design To Push the Boundaries of Sequence Control. Macromolecules, 2016, 49, 9336-9344.                                                                                                        | 2.2  | 51        |
| 62 | Tandem mass spectrometry sequencing in the negative ion mode to read binary information encoded in sequenceâ€defined poly(alkoxyamine amide)s. Rapid Communications in Mass Spectrometry, 2016, 30, 22-28. | 0.7  | 27        |
| 63 | Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequenceâ€Coded Polymer Barcodes. Angewandte Chemie, 2016, 128, 10880-10883.                                             | 1.6  | 18        |
| 64 | Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequenceâ€Coded Polymer Barcodes. Angewandte Chemie - International Edition, 2016, 55, 10722-10725.                      | 7.2  | 67        |
| 65 | Orthogonal Synthesis of "Easy-to-Read―Information-Containing Polymers Using Phosphoramidite and Radical Coupling Steps. Journal of the American Chemical Society, 2016, 138, 9417-9420.                    | 6.6  | 104       |
| 66 | Orthogonal Synthesis of Xeno Nucleic Acids. Chemistry - A European Journal, 2016, 22, 17945-17948.                                                                                                         | 1.7  | 5         |
| 67 | From precision polymers to complex materials and systems. Nature Reviews Materials, 2016, 1, .                                                                                                             | 23.3 | 725       |
| 68 | Optimal ATRPâ€Made Soluble Polymer Supports for Phosphoramidite Chemistry. Chemistry - A European Journal, 2016, 22, 3462-3469.                                                                            | 1.7  | 9         |
| 69 | MS/MS Digital Readout: Analysis of Binary Information Encoded in the Monomer Sequences of Poly(triazole amide)s. Analytical Chemistry, 2016, 88, 3715-3722.                                                | 3.2  | 50        |
| 70 | Chapter 3. Synthesis of Non-natural Polymers with Controlled Primary Structures. RSC Polymer Chemistry Series, 2016, , 66-106.                                                                             | 0.1  | 0         |
| 71 | Preparation of Informationâ€Containing Macromolecules by Ligation of Dyadâ€Encoded Oligomers.<br>Chemistry - A European Journal, 2015, 21, 11961-11965.                                                    | 1.7  | 50        |
| 72 | Design and synthesis of digitally encoded polymers that can be decoded and erased. Nature Communications, 2015, 6, 7237.                                                                                   | 5.8  | 260       |

| #  | Article                                                                                                                                                                              | IF  | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis of Monodisperse Sequenceâ€Defined Polymers Using Protectingâ€Groupâ€Free Iterative Strategies. Macromolecular Chemistry and Physics, 2015, 216, 1498-1506.                 | 1.1 | 85        |
| 74 | Debromination of ATRP-made Wang soluble polymer supports. Polymer, 2015, 72, 341-347.                                                                                                | 1.8 | 9         |
| 75 | On the synthesis of sequence-controlled poly(vinyl benzyl amine-co-N-substituted maleimides) copolymers. European Polymer Journal, 2015, 62, 338-346.                                | 2.6 | 22        |
| 76 | MS/MS Sequencing of Digitally Encoded Poly(alkoxyamine amide)s. Macromolecules, 2015, 48, 4319-4328.                                                                                 | 2.2 | 62        |
| 77 | Coding Macromolecules: Inputting Information in Polymers Using Monomer-Based Alphabets.<br>Macromolecules, 2015, 48, 4759-4767.                                                      | 2.2 | 171       |
| 78 | Synthesis of Non-Natural Sequence-Encoded Polymers Using Phosphoramidite Chemistry. Journal of the American Chemical Society, 2015, 137, 5629-5635.                                  | 6.6 | 180       |
| 79 | Synthesis of Monodisperse Sequence-Coded Polymers with Chain Lengths above DP100. ACS Macro Letters, 2015, 4, 1077-1080.                                                             | 2.3 | 141       |
| 80 | Convergent synthesis of digitally-encoded poly(alkoxyamine amide)s. Chemical Communications, 2015, 51, 15677-15680.                                                                  | 2.2 | 44        |
| 81 | An Introduction to Sequence-Controlled Polymers. ACS Symposium Series, 2014, , 1-11.                                                                                                 | 0.5 | 7         |
| 82 | On the Interaction of Adherent Cells with Thermoresponsive Polymer Coatings. Polymers, 2014, 6, 1164-1177.                                                                           | 2.0 | 20        |
| 83 | Some More Insights on Precisely Controlled Polymer Architectures. Macromolecular Rapid Communications, 2014, 35, 377-377.                                                            | 2.0 | 4         |
| 84 | Precisely Controlled Polymer Architectures. Macromolecular Rapid Communications, 2014, 35, 122-122.                                                                                  | 2.0 | 12        |
| 85 | Complex single-chain polymer topologies locked by positionable twin disulfide cyclic bridges. Chemical Communications, 2014, 50, 1570.                                               | 2.2 | 52        |
| 86 | Information-containing macromolecules. Nature Chemistry, 2014, 6, 455-456.                                                                                                           | 6.6 | 189       |
| 87 | Solid-Phase Synthesis as a Tool for the Preparation of Sequence-Defined Oligomers Based on Natural Amino Acids and Synthetic Building Blocks. ACS Symposium Series, 2014, , 103-116. | 0.5 | 7         |
| 88 | Synthesis of Sequence-Controlled Copolymers Using Time-Regulated Additions of N-Substituted Maleimides in Styrenic Radical Polymerizations. ACS Symposium Series, 2014, , 119-131.   | 0.5 | 5         |
| 89 | Reading Polymers: Sequencing of Natural and Synthetic Macromolecules. Angewandte Chemie -<br>International Edition, 2014, 53, 13010-13019.                                           | 7.2 | 152       |
| 90 | Synthesis of Molecularly Encoded Oligomers Using a Chemoselective "AB + CD―lterative Approach.<br>Macromolecular Rapid Communications, 2014, 35, 141-145.                            | 2.0 | 105       |

| #   | Article                                                                                                                                                                                         | IF  | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Synthesis and Characterization of Sequence-Controlled Semicrystalline Comb Copolymers: Influence of Primary Structure on Materials Properties. Macromolecules, 2014, 47, 1570-1577.             | 2.2 | 41        |
| 92  | Precision PEGylated Polymers Obtained by Sequenceâ€Controlled Copolymerization and Postpolymerization Modification. Angewandte Chemie - International Edition, 2014, 53, 9231-9235.             | 7.2 | 36        |
| 93  | Compartmentalization of Single Polymer Chains by Stepwise Intramolecular Cross-Linking of Sequence-Controlled Macromolecules. Journal of the American Chemical Society, 2014, 136, 12888-12891. | 6.6 | 92        |
| 94  | Primary Structure Control of Oligomers Based on Natural and Synthetic Building Blocks. ACS Macro Letters, 2014, 3, 291-294.                                                                     | 2.3 | 20        |
| 95  | Aperiodic Copolymers. ACS Macro Letters, 2014, 3, 1020-1023.                                                                                                                                    | 2.3 | 60        |
| 96  | Synthesis of Wellâ€Defined Polystyrene Rink Amide Soluble Supports and Their Use in Peptide Synthesis. Macromolecular Chemistry and Physics, 2014, 215, 1984-1990.                              | 1.1 | 18        |
| 97  | Writing on Polymer Chains. Accounts of Chemical Research, 2013, 46, 2696-2705.                                                                                                                  | 7.6 | 141       |
| 98  | Effects of PEG-Based Thermoresponsive Polymer Brushes on Fibroblast Spreading and Gene Expression. Cellular and Molecular Bioengineering, 2013, 6, 287-298.                                     | 1.0 | 18        |
| 99  | Sequence-Controlled Polymers. Science, 2013, 341, 1238149.                                                                                                                                      | 6.0 | 1,097     |
| 100 | Sequence-controlled polymerization using dendritic macromonomers: precise chain-positioning of bulky functional clusters. Chemical Communications, 2013, 49, 7280.                              | 2.2 | 18        |
| 101 | Microstructure Control: An Underestimated Parameter in Recent Polymer Design. Macromolecular Chemistry and Physics, 2013, 214, 135-142.                                                         | 1.1 | 58        |
| 102 | Synthesis of Singleâ€Chain Sugar Arrays. Angewandte Chemie - International Edition, 2013, 52, 2335-2339.                                                                                        | 7.2 | 66        |
| 103 | Convenient Routes to Efficiently N-PEGylated Peptides. ACS Macro Letters, 2013, 2, 641-644.                                                                                                     | 2.3 | 11        |
| 104 | Influence of Strong Electron-Donor Monomers in Sequence-Controlled Polymerizations. ACS Macro Letters, 2012, 1, 589-592.                                                                        | 2.3 | 66        |
| 105 | On the influence of the architecture of poly(ethylene glycol)-based thermoresponsive polymers on cell adhesion. Biomicrofluidics, 2012, 6, 024129.                                              | 1.2 | 30        |
| 106 | Polymerâ€Chain Encoding: Synthesis of Highly Complex Monomer Sequence Patterns by Using Automated Protocols. Angewandte Chemie - International Edition, 2012, 51, 12254-12257.                  | 7.2 | 66        |
| 107 | "Inverse―synthesis of polymer bioconjugates using soluble supports. Chemical Communications, 2012, 48, 3887.                                                                                    | 2.2 | 36        |
| 108 | Precision polyelectrolytes. Chemical Communications, 2012, 48, 1517-1519.                                                                                                                       | 2.2 | 35        |

| #   | Article                                                                                                                                                                                       | IF           | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 109 | Slow science. Nature Chemistry, 2012, 4, 588-589.                                                                                                                                             | 6.6          | 23        |
| 110 | Ultra-precise insertion of functional monomers in chain-growth polymerizations. Nature Communications, $2012,3,.$                                                                             | 5 <b>.</b> 8 | 171       |
| 111 | Controlling Polymer Primary Structure Using CRP: Synthesis of Sequence-Controlled and Sequence-Defined Polymers. ACS Symposium Series, 2012, , 1-12.                                          | 0.5          | 5         |
| 112 | New methods of polymer synthesis. Polymer Chemistry, 2012, 3, 1677.                                                                                                                           | 1.9          | 13        |
| 113 | Controlled folding of polystyrene single chains: design of asymmetric covalent bridges. Polymer Chemistry, 2012, 3, 1796-1802.                                                                | 1.9          | 62        |
| 114 | Polymer Science: The Next Generation. Macromolecular Rapid Communications, 2012, 33, 721-721.                                                                                                 | 2.0          | 3         |
| 115 | Controlled Positioning of Activated Ester Moieties on Wellâ€Defined Linear Polymer Chains.<br>Macromolecular Rapid Communications, 2012, 33, 54-60.                                           | 2.0          | 50        |
| 116 | Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition. Polymer Chemistry, 2011, 2, 1486.                                                     | 1.9          | 41        |
| 117 | Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces. Polymer Chemistry, 2011, 2, 137-147.                                       | 1.9          | 31        |
| 118 | Orthogonal modification of polymer chain-ends via sequential nitrile oxide–alkyne and azide–alkyne Huisgen cycloadditions. Polymer Chemistry, 2011, 2, 372-375.                               | 1.9          | 34        |
| 119 | Single-chain technology using discrete synthetic macromolecules. Nature Chemistry, 2011, 3, 917-924.                                                                                          | 6.6          | 348       |
| 120 | Well-Defined Uncharged Polymers with a Sharp UCST in Water and in Physiological Milieu. Macromolecules, 2011, 44, 413-415.                                                                    | 2.2          | 131       |
| 121 | Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nature Chemistry, 2011, 3, 234-238.                                                    | 6.6          | 243       |
| 122 | Catalytic accordions. Nature, 2011, 473, 40-41.                                                                                                                                               | 13.7         | 45        |
| 123 | PEGylation Improves Nanoparticle Formation and Transfection Efficiency of Messenger RNA. Pharmaceutical Research, 2011, 28, 2223-2232.                                                        | 1.7          | 43        |
| 124 | Assembly and Degradation of Lowâ€Fouling Clickâ€Functionalized Poly(ethylene glycol)â€Based Multilayer Films and Capsules. Small, 2011, 7, 1075-1085.                                         | 5 <b>.</b> 2 | 55        |
| 125 | Tailored Polymer Microstructures Prepared by Atom Transfer Radical Copolymerization of Styrene and <i>N</i> à€substituted Maleimides. Macromolecular Rapid Communications, 2011, 32, 127-135. | 2.0          | 130       |
| 126 | Precision Macromolecular Chemistry. Macromolecular Rapid Communications, 2011, 32, 113-114.                                                                                                   | 2.0          | 15        |

| #   | Article                                                                                                                                                                                                                                                                                                                                  | IF   | Citations |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Thermoâ€Switchable Materials Prepared Using the OEGMAâ€Platform. Advanced Materials, 2011, 23, 2237-2243.                                                                                                                                                                                                                                | 11.1 | 378       |
| 128 | Precision Synthesis of Biodegradable Polymers. Angewandte Chemie - International Edition, 2011, 50, 9244-9246.                                                                                                                                                                                                                           | 7.2  | 91        |
| 129 | Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polymer Chemistry, 2010, 1, 55.                                                                                                                                                                                                                             | 1.9  | 389       |
| 130 | Tailorâ€Made Soluble Polymer Supports: Synthesis of a Series of ATRP Initiators Containing Labile Wang Linkers. Macromolecular Chemistry and Physics, 2010, 211, 940-947.                                                                                                                                                                | 1.1  | 19        |
| 131 | A controlled sequence of events. Nature Chemistry, 2010, 2, 84-85.                                                                                                                                                                                                                                                                       | 6.6  | 137       |
| 132 | Thermoresponsive PEG-Based Polymer Layers: Surface Characterization with AFM Force Measurements. Langmuir, 2010, 26, 3462-3467.                                                                                                                                                                                                          | 1.6  | 64        |
| 133 | Smart PEGylation of Trypsin. Biomacromolecules, 2010, 11, 2130-2135.                                                                                                                                                                                                                                                                     | 2.6  | 67        |
| 134 | Facile Synthesis of Functional Periodic Copolymers: A Step toward Polymer-Based Molecular Arrays Macromolecules, 2010, 43, 44-50.                                                                                                                                                                                                        | 2.2  | 92        |
| 135 | Characterization of Tailor-Made Copolymers of Oligo(ethylene glycol) Methyl Ether Methacrylate and <i>N</i> , <i>N</i> ,Ci>NDimethylaminoethyl Methacrylate as Nonviral Gene Transfer Agents: Influence of Macromolecular Structure on Gene Vector Particle Properties and Transfection Efficiency.  Biomacromolecules. 2010. 11. 39-50. | 2.6  | 61        |
| 136 | Smart bioactive surfaces. Soft Matter, 2010, 6, 705-713.                                                                                                                                                                                                                                                                                 | 1.2  | 72        |
| 137 | Well-defined synthetic polymers with a protein-like gelation behavior in water. Chemical Communications, 2010, 46, 4517.                                                                                                                                                                                                                 | 2.2  | 47        |
| 138 | Monitoring cell detachment on PEG-based thermoresponsive surfaces using TIRF microscopy. Soft Matter, 2010, 6, 4262.                                                                                                                                                                                                                     | 1.2  | 43        |
| 139 | Smart Polymer Surfaces: Concepts and Applications in Biosciences. Advances in Polymer Science, 2010, , 1-33.                                                                                                                                                                                                                             | 0.4  | 27        |
| 140 | PEG-based thermogels: Applicability in physiological media. Journal of Controlled Release, 2009, 140, 224-229.                                                                                                                                                                                                                           | 4.8  | 97        |
| 141 | Tuning the Thickness of Polymer Brushes Grafted from Nonlinearly Growing Multilayer Assemblies.<br>Langmuir, 2009, 25, 5949-5956.                                                                                                                                                                                                        | 1.6  | 35        |
| 142 | Sequence control in polymer synthesis. Chemical Society Reviews, 2009, 38, 3383.                                                                                                                                                                                                                                                         | 18.7 | 456       |
| 143 | Metal-Free "Click―Chemistry: Efficient Polymer Modification via 1,3-Dipolar Cycloaddition of Nitrile Oxides and Alkynes. Macromolecules, 2009, 42, 5411-5413.                                                                                                                                                                            | 2.2  | 75        |
| 144 | Liquid-Phase Synthesis of Block Copolymers Containing Sequence-Ordered Segments. Journal of the American Chemical Society, 2009, 131, 9195-9197.                                                                                                                                                                                         | 6.6  | 169       |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Fabrication of Colloidal Stable, Thermosensitive, and Biocompatible Magnetite Nanoparticles and Study of Their Reversible Agglomeration in Aqueous Milieu. Chemistry of Materials, 2009, 21, 1906-1914.                    | 3.2  | 90        |
| 146 | Design of Oligo(ethylene glycol)-Based Thermoresponsive Polymers: an Optimization Study. Designed Monomers and Polymers, 2009, 12, 343-353.                                                                                | 0.7  | 87        |
| 147 | Thermogelation of PEG-Based Macromolecules of Controlled Architecture. Macromolecules, 2009, 42, 33-36.                                                                                                                    | 2.2  | 90        |
| 148 | Synthesis of Smart Materials by ATRP of Oligo(Ethylene Glycol) Methacrylates. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 37-47.                                                          | 0.5  | 3         |
| 149 | Design of Thermoresponsive Materials by ATRP of Oligo(ethylene glycol)-based (Macro)monomers. ACS Symposium Series, 2009, , 189-202.                                                                                       | 0.5  | 26        |
| 150 | PEGylated Chromatography: Efficient Bioseparation on Silica Monoliths Grafted with Smart Biocompatible Polymers. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1869-1872.                                             | 4.0  | 45        |
| 151 | Polymer- and Colloid-Functionalization Using a Combination Of ATRP and Click Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 133-143.                                              | 0.5  | 0         |
| 152 | Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. Journal of Polymer Science Part A, 2008, 46, 3459-3470.                                                 | 2.5  | 1,079     |
| 153 | A "Click―Strategy for Tuning in situ the Hydrophilic–Hydrophobic Balance of AB Macrosurfactants.<br>Macromolecular Rapid Communications, 2008, 29, 1161-1166.                                                              | 2.0  | 23        |
| 154 | Development of a Library of <i>N</i> à€Substituted Maleimides for the Local Functionalization of Linear Polymer Chains. Chemistry - A European Journal, 2008, 14, 10949-10957.                                             | 1.7  | 118       |
| 155 | Copperâ€Free Azide–Alkyne Cycloadditions: New Insights and Perspectives. Angewandte Chemie -<br>International Edition, 2008, 47, 2182-2184.                                                                                | 7.2  | 301       |
| 156 | Controlled Cell Adhesion on PEGâ€Based Switchable Surfaces. Angewandte Chemie - International Edition, 2008, 47, 5666-5668.                                                                                                | 7.2  | 347       |
| 157 | Modular chemical tools for advanced macromolecular engineering. Polymer, 2008, 49, 817-824.                                                                                                                                | 1.8  | 101       |
| 158 | Modern trends in polymer bioconjugates design. Progress in Polymer Science, 2008, 33, 1-39.                                                                                                                                | 11.8 | 500       |
| 159 | Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne "click―chemistry. Advanced Drug Delivery Reviews, 2008, 60, 958-970.                                         | 6.6  | 495       |
| 160 | Easy Access to Bioactive Peptideâ^Polymer Conjugates via RAFT. Macromolecules, 2008, 41, 1073-1075.                                                                                                                        | 2.2  | 109       |
| 161 | 'Click' Bioconjugation of a Well-Defined Synthetic Polymer and a Protein Transduction Domain.<br>Australian Journal of Chemistry, 2007, 60, 410.                                                                           | 0.5  | 70        |
| 162 | About the Phase Transitions in Aqueous Solutions of Thermoresponsive Copolymers and Hydrogels Based on 2-(2-methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules, 2007, 40, 2503-2508. | 2.2  | 437       |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | A Facile Procedure for Controlling Monomer Sequence Distribution in Radical Chain Polymerizations. Journal of the American Chemical Society, 2007, 129, 9542-9543.                                                              | 6.6 | 304       |
| 164 | Investigation of a dual set of driving forces (hydrophobic + electrostatic) for the two-step fabrication of defined block copolymer micelles. Soft Matter, 2007, 3, 694-698.                                                    | 1.2 | 19        |
| 165 | Design, Synthesis, and Aqueous Aggregation Behavior of Nonionic Single and Multiple<br>Thermoresponsive Polymers. Langmuir, 2007, 23, 84-93.                                                                                    | 1.6 | 179       |
| 166 | Biocompatible, Thermoresponsive, and Biodegradable:  Simple Preparation of "All-in-One―Biorelevant Polymers. Macromolecules, 2007, 40, 8540-8543.                                                                               | 2.2 | 274       |
| 167 | 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science. Angewandte Chemie - International Edition, 2007, 46, 1018-1025.                                                   | 7.2 | 1,413     |
| 168 | <i>In Situ</i> Functionalization of Thermoresponsive Polymeric Micelles using the "Click― Cycloaddition of Azides and Alkynes. QSAR and Combinatorial Science, 2007, 26, 1151-1158.                                             | 1.5 | 35        |
| 169 | One-Pot Synthesis of PEGylated Ultrasmall Iron-Oxide Nanoparticles and Their in Vivo Evaluation as Magnetic Resonance Imaging Contrast Agents. Biomacromolecules, 2006, 7, 3132-3138.                                           | 2.6 | 243       |
| 170 | Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST:Â Is the Age of Poly(NIPAM) Over?. Journal of the American Chemical Society, 2006, 128, 13046-13047.                                        | 6.6 | 1,125     |
| 171 | Preparation of Ideal PEG Analogues with a Tunable Thermosensitivity by Controlled Radical Copolymerization of 2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules, 2006, 39, 893-896. | 2.2 | 792       |
| 172 | Combining ATRP and "Click―Chemistry: a Promising Platform toward Functional Biocompatible Polymers and Polymer Bioconjugates. Macromolecules, 2006, 39, 6376-6383.                                                              | 2.2 | 264       |
| 173 | H-Bonding-Directed Self-Assembly of Synthetic Copolymers Containing Nucleobases:Â Organization and Colloidal Fusion in a Noncompetitive Solvent. Langmuir, 2006, 22, 7411-7415.                                                 | 1.6 | 28        |
| 174 | Solution self-assembly of tailor-made macromolecular building blocks prepared by controlled radical polymerization techniques. Polymer International, 2006, 55, 979-993.                                                        | 1.6 | 129       |
| 175 | Novel Organo-Soluble or Water-Soluble Copolymers Containing DNA Nucleobases. ACS Symposium Series, 2006, , 185-197.                                                                                                             | 0.5 | 2         |
| 176 | Intramolecular Hydrogen Bonding: The Case ofβ-Phosphorylated Nitroxide (= Aminoxyl) Radical.<br>Helvetica Chimica Acta, 2006, 89, 2119-2132.                                                                                    | 1.0 | 26        |
| 177 | Designing Polymer-Based DNA Carriers for Non-Viral Gene Delivery: Have We Reached an Upper Performance Limit?., 2006,, 57-76.                                                                                                   |     | 1         |
| 178 | Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium. Angewandte Chemie - International Edition, 2005, 44, 5262-5265.                                                          | 7.2 | 285       |
| 179 | Multicompartment Micelles: Has the Long-Standing Dream Become a Reality?. Macromolecular Chemistry and Physics, 2005, 206, 813-817.                                                                                             | 1.1 | 149       |
| 180 | Preparation of Well-Defined Diblock Copolymers with Short Polypeptide Segments by Polymerization of N-Carboxy Anhydrides. Macromolecular Rapid Communications, 2005, 26, 23-28.                                                 | 2.0 | 57        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Combining Atom Transfer Radical Polymerization and Click Chemistry: A Versatile Method for the Preparation of End-Functional Polymers. Macromolecular Rapid Communications, 2005, 26, 514-518.                           | 2.0 | 277       |
| 182 | Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene. Journal of Polymer Science Part A, 2005, 43, 897-910.                                           | 2.5 | 168       |
| 183 | Block and random copolymers as surfactants for dispersion polymerization. I. Synthesis via atom transfer radical polymerization and ring-opening polymerization. Journal of Polymer Science Part A, 2005, 43, 1498-1510. | 2.5 | 111       |
| 184 | Properties of well-defined alternating and random copolymers of methacrylates and styrene prepared by controlled/living radical polymerization. Journal of Polymer Science Part A, 2005, 43, 3440-3446.                  | 2.5 | 37        |
| 185 | Preparation by controlled radical polymerization and self-assembly via base-recognition of synthetic polymers bearing complementary nucleobases. Journal of Polymer Science Part A, 2005, 43, 4805-4818.                 | 2.5 | 65        |
| 186 | DNA-like "Melting―of Adenine- and Thymine-Functionalized Synthetic Copolymers. Macromolecules, 2005, 38, 8124-8126.                                                                                                      | 2.2 | 58        |
| 187 | Kinetics and Molar Mass Evolution during Atom Transfer Radical Polymerization ofn-Butyl Acrylate Using Automatic Continuous Online Monitoring. Macromolecules, 2005, 38, 9556-9563.                                      | 2.2 | 21        |
| 188 | Preparation and characterization of graft terpolymers with controlled molecular structure. Journal of Polymer Science Part A, 2004, 42, 1939-1952.                                                                       | 2.5 | 82        |
| 189 | Controlled/Living Radical Polymerization of Methacrylic Monomers in the Presence of Lewis Acids: Influence on Tacticity. Macromolecular Rapid Communications, 2004, 25, 486-492.                                         | 2.0 | 100       |
| 190 | Synthesis and Properties of Copolymers with Tailored Sequence Distribution by Controlled/Living Radical Polymerization. ACS Symposium Series, 2003, , 268-282.                                                           | 0.5 | 43        |
| 191 | Use of an Immobilized/Soluble Hybrid ATRP Catalyst System for the Preparation of Block Copolymers, Random Copolymers, and Polymers with High Degree of Chain End Functionality. Macromolecules, 2003, 36, 1075-1082.     | 2.2 | 57        |
| 192 | Stereoblock Copolymers and Tacticity Control in Controlled/Living Radical Polymerization. Journal of the American Chemical Society, 2003, 125, 6986-6993.                                                                | 6.6 | 264       |
| 193 | Preparation of Segmented Copolymers in the Presence of an Immobilized/Soluble Hybrid ATRP Catalyst System. Macromolecules, 2003, 36, 27-35.                                                                              | 2.2 | 36        |
| 194 | Synthesis of Well-Defined Alternating Copolymers by Controlled/Living Radical Polymerization in the Presence of Lewis Acids. Macromolecules, 2003, 36, 3136-3145.                                                        | 2.2 | 135       |
| 195 | Synthesis of Well-Defined Alternating Copolymers Poly(methyl methacrylate-alt-styrene) by RAFT Polymerization in the Presence of Lewis Acid. Macromolecules, 2002, 35, 2448-2451.                                        | 2.2 | 79        |
| 196 | Kinetic modeling of the chain-end functionality in atom transfer radical polymerization. Macromolecular Chemistry and Physics, 2002, 203, 1385-1395.                                                                     | 1.1 | 99        |
| 197 | Living Radical Polymerization: Use of an Excess of Nitroxide as a Rate Moderator. Macromolecules, 2001, 34, 8866-8871.                                                                                                   | 2.2 | 141       |
| 198 | The Persistent Radical Effect in Nitroxide Mediated Polymerization: Experimental Validity. Macromolecular Rapid Communications, 2001, 22, 189-193.                                                                       | 2.0 | 68        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | N-tert-Butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide as counter radical in the controlled free radical polymerization of styrene: kinetic aspects. Macromolecular Chemistry and Physics, 2000, 201, 662-669. | 1.1 | 49        |
| 200 | Anionic Polymerization of Phenyl Glycidyl Ether in Miniemulsion. Macromolecules, 2000, 33, 7730-7736.                                                                                                                | 2.2 | 64        |