Jaephil Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4258318/publications.pdf

Version: 2024-02-01

729 1341 54,853 378 120 223 citations h-index g-index papers 409 409 409 32602 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	IrO ₂ /LiLa ₂ IrO ₆ as a robust electrocatalyst for the oxygen evolution reaction in acidic media. Journal of Materials Chemistry A, 2022, 10, 3393-3399.	5.2	14
2	Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2022, 307, 121204.	10.8	103
3	The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nature Communications, 2022, 13, 1270.	5.8	126
4	Development of Highâ€Energy Anodes for Allâ€Solidâ€State Lithium Batteries Based on Sulfide Electrolytes. Angewandte Chemie, 2022, 134, .	1.6	6
5	Development of Highâ€Energy Anodes for Allâ€Solidâ€State Lithium Batteries Based on Sulfide Electrolytes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
6	Material design and surface chemistry for advanced rechargeable zinc–air batteries. Chemical Science, 2022, 13, 6159-6180.	3.7	40
7	P and Mo Dual Doped Ru Ultrasmall Nanoclusters Embedded in Pâ€Doped Porous Carbon toward Efficient Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	10.2	58
8	Highly Densified Fractureâ€Free Siliconâ€Based Electrode for High Energy Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
9	The Heterostructure of Ru ₂ P/WO ₃ /NPC Synergistically Promotes H ₂ O Dissociation for Improved Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 4110-4116.	7.2	141
10	The Heterostructure of Ru ₂ P/WO ₃ /NPC Synergistically Promotes H ₂ O Dissociation for Improved Hydrogen Evolution. Angewandte Chemie, 2021, 133, 4156-4162.	1.6	33
11	Recent Advances and Prospects of Atomic Substitution on Layered Positive Materials for Lithiumâ€lon Battery. Advanced Energy Materials, 2021, 11, 2003197.	10.2	31
12	Alloy-strain-output induced lattice dislocation in Ni ₃ FeN/Ni ₃ Fe ultrathin nanosheets for highly efficient overall water splitting. Journal of Materials Chemistry A, 2021, 9, 4036-4043.	5.2	54
13	Metal-Ion Chelating Gel Polymer Electrolyte for Ni-Rich Layered Cathode Materials at a High Voltage and an Elevated Temperature. ACS Applied Materials & Interfaces, 2021, 13, 9965-9974.	4.0	9
14	Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nature Communications, 2021, 12, 838.	5.8	122
15	Latticeâ€Oxygenâ€Stabilized Li―and Mnâ€Rich Cathodes with Subâ€Micrometer Particles by Modifying the Excessâ€Li Distribution. Advanced Materials, 2021, 33, e2100352.	11.1	32
16	Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nature Energy, 2021, 6, 362-371.	19.8	274
17	A Dry Room-Free High-Energy Density Lithium-ion Batteries Enabled by Impurity Scavenging Separator Membrane. Energy Storage Materials, 2021, 36, 355-364.	9.5	25
18	Exploring the Dominant Role of Atomic―and Nanoâ€Ruthenium as Active Sites for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media. Advanced Science, 2021, 8, e2004516.	5 . 6	58

#	Article	IF	CITATIONS
19	Ru atom-modified Co4N-CoF2 heterojunction catalyst for high-performance alkaline hydrogen evolution. Chemical Engineering Journal, 2021, 414, 128865.	6.6	32
20	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie, 2021, 133, 18969-18977.	1.6	30
21	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie - International Edition, 2021, 60, 18821-18829.	7.2	346
22	SrIrO3 modified with laminar Sr2IrO4 as a robust bifunctional electrocatalyst for overall water splitting in acidic media. Chemical Engineering Journal, 2021, 419, 129604.	6.6	28
23	Reliable protocols for calculating the specific energy and energy density of Li-Ion batteries. Materials Today Energy, 2021, 21, 100838.	2.5	18
24	Gettering La Effect from La ₃ IrO ₇ as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction in Acid Media. Advanced Energy Materials, 2021, 11, 2003561.	10.2	45
25	Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Science China Materials, 2021, 64, 1408-1417.	3.5	25
26	Weakened lattice-strain effect in MoO _{<i>x</i>} @NPC-supported ruthenium dots toward high-efficiency hydrogen generation. Journal of Materials Chemistry A, 2021, 9, 24348-24354.	5. 2	6
27	Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nature Energy, 2021, 6, 1164-1175.	19.8	107
28	Integration of Graphite and Silicon Anodes for the Commercialization of Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 110-135.	7.2	460
29	Graphit―und‧iliciumâ€Anoden fýr Lithiumionen―Hochenergiebatterien. Angewandte Chemie, 2020, 132, 112-138.	1.6	23
30	In-situ formed N doped bamboo-like carbon nanotube decorated with Fe–Ni–Cr nanoparticles as efficient electrocatalysts for overall water-splitting. Materials Chemistry and Physics, 2020, 241, 122375.	2.0	13
31	Efficient electrocatalytic conversion of N ₂ to NH ₃ on NiWO ₄ under ambient conditions. Nanoscale, 2020, 12, 1478-1483.	2.8	23
32	Bimetallic metal–organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 2099-2104.	5.2	55
33	Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Materials, 2020, 26, 157-164.	9.5	79
34	Surface and Interfacial Chemistry in the Nickelâ€Rich Cathode Materials. Batteries and Supercaps, 2020, 3, 309-322.	2.4	29
35	Fe _x Ni _y /CeO ₂ loaded on N-doped nanocarbon as an advanced bifunctional electrocatalyst for the overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 470-476.	3.0	27
36	Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithiumâ€ion Battery Anodes. Advanced Energy Materials, 2020, 10, 1903400.	10.2	50

#	Article	IF	CITATIONS
37	Fully Conjugated Phthalocyanine Copper Metal–Organic Frameworks for Sodium–Iodine Batteries with Longâ€Timeâ€Cycling Durability. Advanced Materials, 2020, 32, e1905361.	11.1	143
38	Unveiling Nickel Chemistry in Stabilizing Highâ€Voltage Cobaltâ€Rich Cathodes for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907903.	7.8	107
39	Calenderingâ€Compatible Macroporous Architecture for Silicon–Graphite Composite toward Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2003286.	11.1	111
40	Stress Relief Principle of Micronâ€Sized Anodes with Large Volume Variation for Practical Highâ€Energy Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 2004841.	7.8	37
41	Scalable Synthesis of Hollow \hat{I}^2 -SiC/Si Anodes <i>via</i> Selective Thermal Oxidation for Lithium-Ion Batteries. ACS Nano, 2020, 14, 11548-11557.	7.3	32
42	High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite. Energy and Environmental Science, 2020, 13, 3723-3731.	15.6	44
43	Boosting Reaction Homogeneity in Highâ€Energy Lithiumâ€Ion Battery Cathode Materials. Advanced Materials, 2020, 32, e2003040.	11.1	130
44	Evaluation of the Volumetric Activity of the Air Electrode in a Zinc–Air Battery Using a Nitrogen and Sulfur Co-doped Metal-free Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 57064-57070.	4.0	6
45	Improvements to the Overpotential of Allâ€Solidâ€State Lithiumâ€Ion Batteries during the Past Ten Years. Advanced Energy Materials, 2020, 10, 2000904.	10.2	45
46	Fe, Al-co-doped NiSe ₂ nanoparticles on reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale, 2020, 12, 13680-13687.	2.8	42
47	Exploring the artificially induced nonstoichiometric effect of Li ₂ RuO ₃ as a reactive promoter on electrocatalytic behavior. Energy and Environmental Science, 2020, 13, 2167-2177.	15.6	26
48	Unraveling the Rapid Redox Behavior of Liâ€Excess 3dâ€Transition Metal Oxides for High Rate Capability. Advanced Energy Materials, 2020, 10, 1904092.	10.2	14
49	Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy and Environmental Science, 2020, 13, 1212-1221.	15.6	48
50	Excessâ€Li Localization Triggers Chemical Irreversibility in Li―and Mnâ€Rich Layered Oxides. Advanced Materials, 2020, 32, e2001944.	11.1	43
51	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using In‧itu X‶ay Absorption Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 15314-15324.	7.2	22
52	Cyclic Aminosilaneâ€Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Liâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2000012.	10.2	91
53	Building Highâ€Rate Nickelâ€Rich Cathodes by Selfâ€Organization of Structurally Stable Macrovoid. Advanced Science, 2020, 7, 1902844.	5.6	20
54	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using In‧itu Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2020, 132, 15427-15437.	1.6	2

#	Article	IF	CITATIONS
55	An Antiaging Electrolyte Additive for Highâ€Energyâ€Density Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000563.	10.2	50
56	Lithiumâ€lon Batteries: Cyclic Aminosilaneâ€Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Liâ€lon Batteries (Adv. Energy Mater. 15/2020). Advanced Energy Materials, 2020, 10, 2070069.	10.2	2
57	Antimonyâ€Based Composites Loaded on Phosphorusâ€Doped Carbon for Boosting Faradaic Efficiency of the Electrochemical Nitrogen Reduction Reaction. Angewandte Chemie, 2019, 131, 13463-13468.	1.6	13
58	Frontispiz: Oxygen Vacancy Diffusion and Condensation in Lithiumâ€lon Battery Cathode Materials. Angewandte Chemie, 2019, 131, .	1.6	0
59	Frontispiece: Oxygen Vacancy Diffusion and Condensation in Lithiumâ€lon Battery Cathode Materials. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
60	Antimonyâ∈Based Composites Loaded on Phosphorusâ€Doped Carbon for Boosting Faradaic Efficiency of the Electrochemical Nitrogen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 13329-13334.	7.2	108
61	Native Void Space for Maximum Volumetric Capacity in Silicon-Based Anodes. Nano Letters, 2019, 19, 8793-8800.	4.5	36
62	Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nature Communications, 2019, 10, 475.	5.8	79
63	Quantification of Pseudocapacitive Contribution in Nanocageâ€Shaped Silicon–Carbon Composite Anode. Advanced Energy Materials, 2019, 9, 1803480.	10.2	75
64	Using lithium chloride as a medium to prepare N,P-codoped carbon nanosheets for oxygen reduction and evolution reactions. Inorganic Chemistry Frontiers, 2019, 6, 417-422.	3.0	5
65	Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 2048-2054.	5.2	104
66	Fabrication of Lamellar Nanosphere Structure for Effective Stressâ€Management in Largeâ€Volumeâ€Variation Anodes of Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1900970.	11.1	52
67	Advances and Prospects of Sulfide Allâ€Solidâ€State Lithium Batteries via Oneâ€toâ€One Comparison with Conventional Liquid Lithium Ion Batteries. Advanced Materials, 2019, 31, e1900376.	11.1	119
68	Highly Efficient CO ₂ Utilization via Aqueous Zinc– or Aluminum–CO ₂ Systems for Hydrogen Gas Evolution and Electricity Production. Angewandte Chemie - International Edition, 2019, 58, 9506-9511.	7.2	33
69	Oxygen Vacancy Diffusion and Condensation in Lithiumâ€ion Battery Cathode Materials. Angewandte Chemie, 2019, 131, 10588-10595.	1.6	45
70	Highly Efficient CO ₂ Utilization via Aqueous Zinc– or Aluminum–CO ₂ Systems for Hydrogen Gas Evolution and Electricity Production. Angewandte Chemie, 2019, 131, 9606-9611.	1.6	6
71	Oxygen Vacancy Diffusion and Condensation in Lithiumâ€ion Battery Cathode Materials. Angewandte Chemie - International Edition, 2019, 58, 10478-10485.	7.2	97
72	Taking a Leading Role as a "First Mover―to Advance Materials Science and Technology at the Ulsan National Institute of Science & Technology (UNIST). Advanced Materials, 2019, 31, 1900370.	11.1	0

#	Article	IF	Citations
73	A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery. Advanced Energy Materials, 2019, 9, 1900694.	10.2	97
74	Coupling a Low Loading of IrP ₂ , PtP ₂ , or Pd ₃ P with Heteroatom-Doped Nanocarbon for Overall Water-Splitting Cells and Zinc–Air Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16461-16473.	4.0	38
7 5	Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10, 1392.	5.8	424
76	Cu97P3-O N /NPC as a bifunctional electrocatalyst for rechargeable zinc-air battery. Journal of Power Sources, 2019, 421, 109-115.	4.0	21
77	Fe-N-C combined with Fe100P O N porous hollow spheres on a phosphoric acid group-rich N-doped carbon as an electrocatalyst for zinc-air battery. Applied Surface Science, 2019, 481, 498-504.	3.1	8
78	Cobalt–Tanninâ€Frameworkâ€Derived Amorphous Coâ^'P/Coâ^'Nâ^'C on N, P Coâ€Doped Porous Carbon with Abundant Active Moieties for Efficient Oxygen Reactions and Water Splitting. ChemSusChem, 2019, 12, 830-838.	3.6	48
79	Mn _{<i>x</i>} (PO ₄) _{<i>y</i>} /NPC As a High Performance Bifunctional Electrocatalyst for Oxygen Electrode Reactions. ChemCatChem, 2019, 11, 1222-1227.	1.8	10
80	Advanced Technologies for Highâ€Energy Aluminum–Air Batteries. Advanced Materials, 2019, 31, e1804784.	11.1	125
81	A Metalâ€Free N and Pâ€Codoped Carbon Nanosphere as Bifunctional Electrocatalyst for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2019, 6, 393-397.	1.7	26
82	A Tannic Acid–Derived Nâ€; P odoped Carbonâ€Supported Ironâ€Based Nanocomposite as an Advanced Trifunctional Electrocatalyst for the Overall Water Splitting Cells and Zinc–Air Batteries. Advanced Energy Materials, 2019, 9, 1803312.	10.2	209
83	Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion. Advanced Energy Materials, 2019, 9, 1803121.	10.2	107
84	Recent Advances in Low-Cost, Highly Efficient Bi-Functional Oxygen Electrocatalysts for High-Performance Zinc-Air Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
85	Unraveling the Rapid Redox Reactions through Superstructure of Lithium-Excess Layered Oxides. ECS Meeting Abstracts, 2019, , .	0.0	0
86	Robust Design of Silicon/Graphite Composite Via Atomic-Scale Rearrangement for High Performance Lithium Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
87	Structural Distribution of Redox-Active Oxygen Governing Chemical Reversibility in Li- and Mn-Rich Layered Oxides. ECS Meeting Abstracts, 2019, , .	0.0	0
88	Toward Maximized Volumetric Energy Density Using Graphite Via Polymer Coating with High Degree of Electrolyte Impregnation. ECS Meeting Abstracts, $2019, \dots$	0.0	0
89	A Novel Si/C Composite as a High Capacity Anode Material for Lithium-ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
90	(Invited) Beyond Si and SiO x : SiN x and SiC x Anode Materials for Lithium-lon Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
91	Exploring Critical Factors Affecting Strain Distribution in 1D Siliconâ€Based Nanostructures for Lithiumâ€lon Battery Anodes. Advanced Materials, 2018, 30, e1705430.	11.1	113
92	Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1552-1562.	15.6	154
93	A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1449-1459.	15.6	213
94	Issues and Challenges Facing Flexible Lithiumâ€lon Batteries for Practical Application. Small, 2018, 14, e1702989.	5.2	152
95	Controllable Solid Electrolyte Interphase in Nickelâ€Rich Cathodes by an Electrochemical Rearrangement for Stable Lithiumâ€ion Batteries. Advanced Materials, 2018, 30, 1704309.	11.1	81
96	Prospect and Reality of Niâ€Rich Cathode for Commercialization. Advanced Energy Materials, 2018, 8, 1702028.	10.2	574
97	Efficient CO2 Utilization via a Hybrid Na-CO2 System Based on CO2 Dissolution. IScience, 2018, 9, 278-285.	1.9	40
98	Zinc-Air Batteries: A Ternary Ni46 Co40 Fe14 Nanoalloy-Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc-Air Batteries (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870346.	11.1	1
99	Electrocatalysts: Low Loading of Rh x P and RuP on N, P Codoped Carbon as Two Trifunctional Electrocatalysts for the Oxygen and Hydrogen Electrode Reactions (Adv. Energy Mater. 29/2018). Advanced Energy Materials, 2018, 8, 1870130.	10.2	4
100	A Ternary Ni ₄₆ Co ₄₀ Fe ₁₄ Nanoalloyâ€Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc–Air Batteries. Advanced Materials, 2018, 30, e1803372.	11.1	73
101	Correlation of Low-Index Facets to Active Sites in Micrometer-Sized Polyhedral Pyrochlore Electrocatalyst. ACS Catalysis, 2018, 8, 9647-9655.	5.5	11
102	A Tailored Bifunctional Electrocatalyst: Boosting Oxygen Reduction/Evolution Catalysis via Electron Transfer Between Nâ€Doped Graphene and Perovskite Oxides. Small, 2018, 14, e1802767.	5.2	85
103	Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries. Nature Communications, 2018, 9, 3715.	5.8	77
104	Flexible 3D Interlocking Lithiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1801917.	10.2	38
105	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
106	Nonaqueous arylated quinone catholytes for lithium–organic flow batteries. Journal of Materials Chemistry A, 2018, 6, 14761-14768.	5.2	13
107	Influence of Surface Charges/Chemistry on the Catalysis of Perovskite Complexes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28502-28508.	4.0	4
108	Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nature Communications, 2018, 9, 2924.	5.8	94

#	Article	IF	Citations
109	Highly active bifunctional oxygen electrocatalysts derived from nickel– or cobalt–phytic acid xerogel for zinc–air batteries. Nanoscale, 2018, 10, 15834-15841.	2.8	31
110	Low Loading of Rh <i></i> P and RuP on N, P Codoped Carbon as Two Trifunctional Electrocatalysts for the Oxygen and Hydrogen Electrode Reactions. Advanced Energy Materials, 2018, 8, 1801478.	10.2	173
111	Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement. Nature Communications, 2018, 9, 3285.	5.8	119
112	Enhanced Long-Term Cycling Performance of Single Crystalline LiCo0.95Ni0.05O2 cathode Material at High Cut-Off Voltage in Li-Ion Cell. ECS Meeting Abstracts, 2018, , .	0.0	O
113	(Invited) A New Type of Ni-Doped LiCoO2 with Enhanced Structural and Electrochemical Reversibility at High Voltage. ECS Meeting Abstracts, 2018, , .	0.0	0
114	Postpatterned Electrodes for Flexible Nodeâ€Type Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605773.	11.1	40
115	Liâ€lon Cells: Surface Engineering Strategies of Layered LiCoO ₂ Cathode Material to Realize Highâ€Energy and Highâ€Voltage Liâ€lon Cells (Adv. Energy Mater. 1/2017). Advanced Energy Materials, 2017, 7,	.10.2	5
116	Selfâ€Induced Concentration Gradient in Nickelâ€Rich Cathodes by Sacrificial Polymeric Bead Clusters for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1602559.	10.2	80
117	Stabilization of Li Metal Anode in DMSOâ€Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O ₂ Batteries. Advanced Energy Materials, 2017, 7, 1602605.	10.2	99
118	Feasibility of Cathode Surface Coating Technology for Highâ€Energy Lithiumâ€ion and Beyondâ€Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605807.	11.1	168
119	Oneâ€toâ€One Comparison of Graphiteâ€Blended Negative Electrodes Using Silicon Nanolayerâ€Embedded Graphite versus Commercial Benchmarking Materials for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700071.	10.2	100
120	Low-Temperature Carbon Coating of Nanosized Li _{1.015} Al _{0.06} Mn _{1.925} O ₄ and High-Density Electrode for High-Power Li-Ion Batteries. Nano Letters, 2017, 17, 3744-3751.	4.5	45
121	Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. Journal of Power Sources, 2017, 357, 97-106.	4.0	127
122	Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nature Communications, 2017, 8, 14589.	5.8	306
123	Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting. Nano Letters, 2017, 17, 4202-4209.	4.5	263
124	Unveiling the Catalytic Origin of Nanocrystalline Yttrium Ruthenate Pyrochlore as a Bifunctional Electrocatalyst for Zn–Air Batteries. Nano Letters, 2017, 17, 3974-3981.	4.5	80
125	Critical Role of Cations in Lithium Sites on Extended Electrochemical Reversibility of Coâ€Rich Layered Oxide. Advanced Materials, 2017, 29, 1605578.	11.1	57
126	Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2017, 10, 129-136.	15.6	154

#	Article	IF	CITATIONS
127	Significance of ferroelectric polarization in poly (vinylidene difluoride) binder for high-rate Li-ion diffusion. Nano Energy, 2017, 32, 255-262.	8.2	61
128	Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithium-Rich Cathodes with Superior Cycling Stability and Rate Capability. ChemElectroChem, 2017, 4, 3-3.	1.7	4
129	Li―and Mnâ€Rich Cathode Materials: Challenges to Commercialization. Advanced Energy Materials, 2017, 7, 1601284.	10.2	383
130	Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2525-2530.	8.8	30
131	Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nature Communications, 2017, 8, 812.	5.8	274
132	Recent progress of analysis techniques for silicon-based anode of lithium-ion batteries. Current Opinion in Electrochemistry, 2017, 6, 77-83.	2.5	16
133	A Highly Efficient and Robust Cation Ordered Perovskite Oxide as a Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. ACS Nano, 2017, 11, 11594-11601.	7.3	219
134	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
135	Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule, 2017, 1, 47-60.	11.7	329
136	Lithiumâ€Oxygen Batteries: Stabilization of Li Metal Anode in DMSOâ€Based Electrolytes via Optimization of Saltâ€"Solvent Coordination for Liâ€"O ₂ Batteries (Adv. Energy Mater. 14/2017). Advanced Energy Materials, 2017, 7, .	10.2	11
137	Simultaneous surface modification method for 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries: Acid treatment and LiCoPO4 coating. Nano Research, 2017, 10, 4210-4220.	5.8	30
138	Material design and engineering of next-generation flow-battery technologies. Nature Reviews Materials, 2017, 2, .	23.3	559
139	Surface Engineering Strategies of Layered LiCoO ₂ Cathode Material to Realize Highâ€Energy and Highâ€Voltage Liâ€Ion Cells. Advanced Energy Materials, 2017, 7, 1601507.	10.2	257
140	Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithiumâ€Rich Cathodes with Superior Cycling Stability and Rate Capability. ChemElectroChem, 2017, 4, 56-65.	1.7	45
141	Enhanced Intrinsic Catalytic Activity of λâ€MnO ₂ by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie - International Edition, 2016, 55, 8599-8604.	7.2	107
142	Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glueâ€Nanofiller for Advanced Liâ€ion Battery Cathode. Advanced Materials, 2016, 28, 4705-4712.	11.1	106
143	Li-Ion Battery Cathodes: Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode (Adv. Mater. 23/2016). Advanced Materials, 2016, 28, 4704-4704.	11.1	3
144	Enhanced Intrinsic Catalytic Activity of λâ€MnO ₂ by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie, 2016, 128, 8741-8746.	1.6	18

#	Article	IF	CITATIONS
145	Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - an Asian Journal, 2016, 11, 10-21.	1.7	190
146	Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy, 2016, 26, 233-240.	8.2	105
147	Highâ€Performance Direct Methanol Fuel Cells with Preciousâ€Metalâ€Free Cathode. Advanced Science, 2016, 3, 1600140.	5.6	105
148	Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016, 11, 601-625.	6.2	738
149	Zincâ€Reduced Mesoporous TiO _{<i>x</i>} Liâ€Ion Battery Anodes with Exceptional Rate Capability and Cycling Stability. Chemistry - an Asian Journal, 2016, 11, 3382-3388.	1.7	8
150	Nanocomb Architecture Design Using Germanium Selenide as High-Performance Lithium Storage Material. Chemistry of Materials, 2016, 28, 6146-6151.	3.2	37
151	Highâ€Performance Heterostructured Cathodes for Lithiumâ€lon Batteries with a Niâ€Rich Layered Oxide Core and a Liâ€Rich Layered Oxide Shell. Advanced Science, 2016, 3, 1600184.	5.6	78
152	Composites of a Prussian Blue Analogue and Gelatinâ€Derived Nitrogenâ€Doped Carbonâ€Supported Porous Spinel Oxides as Electrocatalysts for a Zn–Air Battery. Advanced Energy Materials, 2016, 6, 1601052.	10.2	98
153	Zn-Air Batteries: Composites of a Prussian Blue Analogue and Gelatin-Derived Nitrogen-Doped Carbon-Supported Porous Spinel Oxides as Electrocatalysts for a Zn-Air Battery (Adv. Energy Mater.) Tj ETQq1 1	0.71842314	rg B T /Over
154	Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy, 2016, 1, .	19.8	563
155	The Chemistry of Energy Conversion and Storage. Chemistry - an Asian Journal, 2016, 11, 1119-1119.	1.7	1
156	High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. Nano Energy, 2016, 20, 315-325.	8.2	187
157	Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries. Energy and Environmental Science, 2016, 9, 1251-1257.	15.6	147
158	Catalytic Effects of B/N-co-Doped Porous Carbon Incorporated with Ketjenblack Nanoparticles for All-Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 2016, 163, A5144-A5149.	1.3	55
159	Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 176-183.	15.6	299
160	Lithiumâ€Ion Batteries: Countering Voltage Decay and Capacity Fading of Lithiumâ€Rich Cathode Material at 60 °C by Hybrid Surface Protection Layers (Adv. Energy Mater. 13/2015). Advanced Energy Materials, 2015, 5, .	10.2	2
161	Cathode Materials: Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries (Adv. Energy Mater. 16/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	1
162	Considering Critical Factors of Liâ€rich Cathode and Si Anode Materials for Practical Liâ€ion Cell Applications. Small, 2015, 11, 4058-4073.	5.2	67

#	Article	IF	Citations
163	Metal (Ni, Co)â€Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. Advanced Functional Materials, 2015, 25, 5799-5808.	7.8	490
164	Critical Requirements for Rapid Charging of Rechargeable Al―and Li―lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 9452-9455.	7.2	59
165	Tunable Internal and Surface Structures of the Bifunctional Oxygen Perovskite Catalysts. Advanced Energy Materials, 2015, 5, 1501560.	10.2	78
166	Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2015, 54, 9654-9658.	7.2	372
167	Nanostructured Electrocatalysts for Allâ€Vanadium Redox Flow Batteries. Chemistry - an Asian Journal, 2015, 10, 2096-2110.	1.7	90
168	Fabrication of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3–} <i>_δ< Catalysts with Enhanced Electrochemical Performance by Removing an Inherent Heterogeneous Surface Film Layer. Advanced Materials, 2015, 27, 266-271.</i>	/i 11.1	114
169	The role of nanoscale-range vanadium treatment in LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ cathode materials for Li-ion batteries at elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 13453-13460.	5.2	131
170	Germanium Silicon Alloy Anode Material Capable of Tunable Overpotential by Nanoscale Si Segregation. Nano Letters, 2015, 15, 4135-4142.	4.5	62
171	Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide. Journal of the American Chemical Society, 2015, 137, 8499-8508.	6.6	127
172	Batteries: Organic-Catholyte-Containing Flexible Rechargeable Lithium Batteries (Adv. Mater. 35/2015). Advanced Materials, 2015, 27, 5094-5094.	11.1	0
173	Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery. Nano Energy, 2015, 12, 161-168.	8.2	62
174	Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 2015, 48, 84-101.	15.8	244
175	A New Coating Method for Alleviating Surface Degradation of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Material: Nanoscale Surface Treatment of Primary Particles. Nano Letters, 2015, 15, 2111-2119.	4.5	452
176	Metal-Air and Redox Flow Batteries. ChemPlusChem, 2015, 80, 257-258.	1.3	1
177	Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery. ACS Nano, 2015, 9, 6493-6501.	7.3	167
178	Nickelâ€Rich Layered Lithium Transitionâ€Metal Oxide for Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 4440-4457.	7.2	1,512
179	Surface Mn Oxidation State Controlled Spinel LiMn ₂ O ₄ as a Cathode Material for Highâ€Energy Liâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500440.	10.2	69
180	Countering Voltage Decay and Capacity Fading of Lithiumâ€Rich Cathode Material at 60 °C by Hybrid Surface Protection Layers. Advanced Energy Materials, 2015, 5, 1500274.	10.2	172

#	Article	IF	Citations
181	Zinc-Air Batteries: All-Solid-State Cable-Type Flexible Zinc-Air Battery (Adv. Mater. 8/2015). Advanced Materials, 2015, 27, 1395-1395.	11.1	6
182	Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500110.	10.2	240
183	Challenges in Accommodating Volume Change of Si Anodes for Liâ€lon Batteries. ChemElectroChem, 2015, 2, 1645-1651.	1.7	204
184	Organicâ€Catholyteâ€Containing Flexible Rechargeable Lithium Batteries. Advanced Materials, 2015, 27, 5141-5146.	11.1	88
185	Hollow Silicon Nanostructures via the Kirkendall Effect. Nano Letters, 2015, 15, 6914-6918.	4.5	67
186	Rechargeable Seawater Battery and Its Electrochemical Mechanism. ChemElectroChem, 2015, 2, 328-332.	1.7	85
187	Allâ€Solidâ€State Cableâ€Type Flexible Zinc–Air Battery. Advanced Materials, 2015, 27, 1396-1401.	11.1	363
188	Hierarchical Surface Atomic Structure of a Manganeseâ€Based Spinel Cathode for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 1153-1158.	7. 2	68
189	Exploration of the Effective Location of Surface Oxygen Defects in Grapheneâ€Based Electrocatalysts for Allâ€Vanadium Redoxâ€Flow Batteries. Advanced Energy Materials, 2015, 5, 1401550.	10.2	107
190	Metal–Organic Frameworkâ€Derived Bambooâ€like Nitrogenâ€Doped Graphene Tubes as an Active Matrix for Hybrid Oxygenâ€Reduction Electrocatalysts. Small, 2015, 11, 1443-1452.	5.2	209
191	Optimization of Carbon―and Binderâ€Free Au Nanoparticleâ€Coated Ni Nanowire Electrodes for Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2015, 5, 1401030.	10.2	84
192	Scalable Integration of Li ₅ FeO ₄ towards Robust, Highâ€Performance Lithiumâ€lon Hybrid Capacitors. ChemSusChem, 2014, 7, 3138-3144.	3.6	63
193	Effect of Lithium Bis(oxalato)borate Additive on Electrochemical Performance of Li _{1.17} Ni _{0.17} Mn _{0.5} Co _{0.17} O ₂ Cathodes for Lithium-lon Batteries. Journal of the Electrochemical Society, 2014, 161, A2012-A2019.	1.3	42
194	Cathode Materials: A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for Highâ€Performance 0.4Li ₂ MnO _{3â€"} 0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2 Cathode Materials (Adv. Energy Mater. 16/2014). Advanced Energy Materials, 2014, 4, .}	2.√3ib>	5
195	Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today, 2014, 9, 604-630.	6.2	545
196	A Bifunctional Perovskite Catalyst for Oxygen Reduction and Evolution. Angewandte Chemie - International Edition, 2014, 53, 4582-4586.	7.2	294
197	Nanocarbon Electrocatalysts for Oxygen Reduction in Alkaline Media for Advanced Energy Conversion and Storage. Advanced Energy Materials, 2014, 4, 1301415.	10.2	351
198	3D Amorphous Silicon on Nanopillar Copper Electrodes as Anodes for High-Rate Lithium-Ion Batteries. ACS Nano, 2014, 8, 1907-1912.	7.3	96

#	Article	IF	CITATIONS
199	A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for Highâ€Performance 0.4Li ₂ MnO _{3â€"} 0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2 Cathode Materials. Advanced Energy Materials, 2014, 4, 1400631.}	2.√süb>	196
200	Metal-Free Ketjenblack Incorporated Nitrogen-Doped Carbon Sheets Derived from Gelatin as Oxygen Reduction Catalysts. Nano Letters, 2014, 14, 1870-1876.	4.5	155
201	Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries. Journal of Materials Chemistry A, 2014, 2, 15808-15815.	5.2	25
202	Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. Nanoscale, 2014, 6, 10604-10610.	2.8	40
203	Lithium reaction mechanism and high rate capability of VS ₄ –graphene nanocomposite as an anode material for lithium batteries. Journal of Materials Chemistry A, 2014, 2, 10847-10853.	5.2	118
204	Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Physical Chemistry Chemical Physics, 2014, 16, 13568-13582.	1.3	104
205	Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials. Nano Letters, 2014, 14, 5965-5972.	4.5	145
206	Quantum Confinement and Its Related Effects on the Critical Size of GeO ₂ Nanoparticles Anodes for Lithium Batteries. Nano Letters, 2014, 14, 1005-1010.	4.5	105
207	Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy and Environmental Science, 2014, 7, 3727-3735.	15.6	218
208	Elastic <i>a</i> -Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS Nano, 2014, 8, 8591-8599.	7.3	180
209	High Performance LiMn ₂ O ₄ Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-lon Batteries. Nano Letters, 2014, 14, 993-999.	4.5	248
210	Graphene/Grapheneâ€Tube Nanocomposites Templated from Cageâ€Containing Metalâ€Organic Frameworks for Oxygen Reduction in Li–O ₂ Batteries. Advanced Materials, 2014, 26, 1378-1386.	11.1	398
211	Flexible High-Energy Li-Ion Batteries with Fast-Charging Capability. Nano Letters, 2014, 14, 4083-4089.	4.5	122
212	A New High Power LiNi _{0.81} Co _{0.1} Al _{0.09} O ₂ Cathode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1301583.	10.2	153
213	Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries. ACS Applied Materials & 1, 1, 2, 2014, 6, 4063-4073.	4.0	398
214	A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer. Nano Letters, 2013, 13, 1145-1152.	4.5	442
215	Facile synthesis of hybrid graphene and carbon nanotubes as a metal-free electrocatalyst with active dual interfaces for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 9603.	5.2	40
216	Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. Journal of Power Sources, 2013, 243, 267-273.	4.0	91

#	Article	IF	Citations
217	Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. Journal of Materials Chemistry A, 2013, 1, 14548.	5.2	89
218	Recent progress on nanostructured 4V cathode materials for Li-ion batteries for mobile electronics. Materials Today, 2013, 16, 487-495.	8.3	68
219	A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Nâ€Doped Ketjenblack Incorporated into Fe/Fe ₃ Câ€Functionalized Melamine Foam. Angewandte Chemie - International Edition, 2013, 52, 1026-1030.	7.2	324
220	Optimized 4â€V Spinel Cathode Material with High Energy Density for Liâ€Ion Cells Operating at 60 °C. Advanced Energy Materials, 2013, 3, 1623-1629.	10.2	38
221	Catalytic Role of Ge in Highly Reversible GeO ₂ /Ge/C Nanocomposite Anode Material for Lithium Batteries. Nano Letters, 2013, 13, 1230-1236.	4.5	261
222	Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-Ion Batteries. Nano Letters, 2013, 13, 3403-3407.	4.5	120
223	Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries. Accounts of Chemical Research, 2013, 46, 1161-1170.	7.6	231
224	Critical Thickness of SiO ₂ Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Liâ€lon Batteries. Advanced Materials, 2013, 25, 4498-4503.	11.1	231
225	Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nature Communications, 2013, 4, 2076.	5.8	630
226	Synthesis and Characterization of Patronite Form of Vanadium Sulfide on Graphitic Layer. Journal of the American Chemical Society, 2013, 135, 8720-8725.	6.6	300
227	Optimized Synthetic Conditions of LiNi _{0.5} Cathode Materials for High Rate Lithium Batteries via Co-Precipitation Method. Journal of the Electrochemical Society, 2013, 160, A105-A111.	1.3	123
228	Siâ€Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 206-212.	10.2	113
229	Role of Li ₆ CoO ₄ Cathode Additive in Li-Ion Cells Containing Low Coulombic Efficiency Anode Material. Journal of the Electrochemical Society, 2012, 159, A1329-A1334.	1.3	82
230	Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge. Journal of the Electrochemical Society, 2012, 159, A1308-A1314.	1.3	141
231	Carbon-coated nanoclustered LiMn0.71Fe0.29PO4 cathode for lithium-ion batteries. Journal of Power Sources, 2012, 216, 162-168.	4.0	42
232	Cableâ€Type Flexible Lithium Ion Battery Based on Hollow Multiâ€Helix Electrodes. Advanced Materials, 2012, 24, 5192-5197.	11.1	331
233	Unique Structural Changes of Threeâ€Dimensionally Ordered Macroporous TiO ₂ Electrode Materials During Electrochemical Cycling. Advanced Energy Materials, 2012, 2, 1425-1432.	10.2	46
234	Challenges Facing Lithium Batteries and Electrical Doubleâ€Layer Capacitors. Angewandte Chemie - International Edition, 2012, 51, 9994-10024.	7.2	2,407

#	Article	IF	Citations
235	Spindle-like Mesoporous α-Fe ₂ O ₃ Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Letters, 2012, 12, 4988-4991.	4.5	874
236	Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for Electrical Energy Storage. Nano Letters, 2012, 12, 3483-3490.	4.5	234
237	Li Reaction Mechanism of MnP Nanoparticles. Journal of the Electrochemical Society, 2012, 159, A669-A672.	1.3	11
238	Highâ€Performance Macroporous Bulk Silicon Anodes Synthesized by Templateâ€Free Chemical Etching. Advanced Energy Materials, 2012, 2, 878-883.	10.2	232
239	Recent Progress in Nonâ€Precious Catalysts for Metalâ€Air Batteries. Advanced Energy Materials, 2012, 2, 816-829.	10.2	652
240	Lithiumâ€Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint. Advanced Energy Materials, 2012, 2, 780-800.	10.2	190
241	Selfâ€Assembled Germanium/Carbon Nanostructures as Highâ€Power Anode Material for the Lithiumâ€lon Battery. Angewandte Chemie - International Edition, 2012, 51, 5657-5661.	7.2	231
242	Improved Rate Capability and Thermal Stability of LiNi0.5Co0.2Mn0.3O2 Cathode Materials via Nanoscale SiP2O7 Coating. Journal of the Electrochemical Society, 2011, 158, A1354.	1.3	61
243	Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2011, 4, 4148.	15.6	191
244	One-dimensional (1D) nanostructured and nanocomposited LiFePO4: its perspective advantages for cathode materials of lithium ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 19226.	1.3	35
245	High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy and Environmental Science, 2011, 4, 425-428.	15.6	265
246	Helical Silicon/Silicon Oxide Core–Shell Anodes Grown onto the Surface of Bulk Silicon. Nano Letters, 2011, 11, 4324-4328.	4.5	78
247	Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-lon Battery Anodes. Journal of Physical Chemistry C, 2011, 115, 9451-9457.	1.5	131
248	Ketjenblack Carbon Supported Amorphous Manganese Oxides Nanowires as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Solutions. Nano Letters, 2011, 11, 5362-5366.	4.5	261
249	One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials. Journal of Materials Chemistry, 2011, 21, 9825.	6.7	200
250	Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy and Environmental Science, 2011, 4, 3395.	15.6	65
251	Who will drive electric vehicles, olivine or spinel?. Energy and Environmental Science, 2011, 4, 1621.	15.6	553
252	Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering Reports, 2011, 72, 203-252.	14.8	467

#	Article	IF	CITATIONS
253	MoS ₂ Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials. Nano Letters, 2011, 11, 4826-4830.	4. 5	991
254	Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. Energy and Environmental Science, 2011, 4, 5013.	15.6	188
255	Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Advanced Energy Materials, 2011, 1, 34-50.	10.2	1,906
256	Flexible Morphology Design of 3Dâ€Macroporous LiMnPO ₄ Cathode Materials for Li Secondary Batteries: Ball to Flake. Advanced Energy Materials, 2011, 1, 347-351.	10.2	80
257	Highâ€Performance, Layered, 3Dâ€LiCoO ₂ Cathodes with a Nanoscale Co ₃ O ₄ Coating via Chemical Etching. Advanced Energy Materials, 2011, 1, 368-372.	10.2	43
258	Spinelâ€Layered Coreâ€Shell Cathode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2011, 1, 821-828.	10.2	181
259	A Novel Lithiumâ€Doping Approach for an Advanced Lithium Ion Capacitor. Advanced Energy Materials, 2011, 1, 1002-1006.	10.2	130
260	Metalâ€Air Batteries: Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air (Adv. Energy) Tj E	тQ _{10.2} 0 0	rgBT/Overloo
261	Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for Highâ€Rate Lithium Batteries. Angewandte Chemie - International Edition, 2011, 50, 9647-9650.	7.2	288
262	Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today, 2011, 6, 28-41.	6.2	381
263	In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material. Electrochimica Acta, 2010, 55, 8876-8882.	2.6	53
264	Spinel LiCo _{0.7} Mn _{1.3} O ₄ Nanowire Clusters as Electrode Materials. ChemSusChem, 2010, 3, 1260-1263.	3.6	3
265	Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries. Advanced Functional Materials, 2010, 20, 3818-3834.	7.8	257
266	Flexible Dimensional Control of Highâ€Capacity Liâ€Ionâ€Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Advanced Materials, 2010, 22, 415-418.	11.1	321
267	Novel Coreâ€Shell Snâ€Cu Anodes for Lithium Rechargeable Batteries Prepared by a Redoxâ€Transmetalation Reaction. Advanced Materials, 2010, 22, 5154-5158.	11.1	138
268	A Critical Size of Silicon Nanoâ€Anodes for Lithium Rechargeable Batteries. Angewandte Chemie - International Edition, 2010, 49, 2146-2149.	7.2	860
269	High power LiCoO2 cathode materials with ultra energy density for Li-ion cells. Electrochemistry Communications, 2010, 12, 992-995.	2.3	56
270	LiNio.8Coo.15Alo.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Nio.8Coo.15Alo.05(OH)2 precursors. Electrochimica Acta, 2010, 56, 333-339.	2.6	120

#	Article	IF	Citations
271	Nanoparticle–Nanorod Core–Shell LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel Cathodes with High Energy Density for Li-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A841.	1.3	52
272	High Performance LiCoO[sub 2] Cathode Materials at $60\hat{A}^{\circ}$ C for Lithium Secondary Batteries Prepared by the Facile Nanoscale Dry-Coating Method. Journal of the Electrochemical Society, 2010, 157, A617.	1.3	36
273	V[sub 2]O[sub 5]-Coated TiO[sub 2] Nanorod Electrodes. Journal of the Electrochemical Society, 2010, 157, A802.	1.3	30
274	Polyaniline Nanocoating on the Surface of Layered Li[Li _{0.2} Nanodisks and Enhanced Cyclability as a Cathode Electrode for Rechargeable Lithium-Ion Battery. Journal of Physical Chemistry C, 2010, 114, 3675-3680.	1.5	34
275	Porous Si anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 2010, 20, 4009.	6.7	305
276	Significant Improvement of LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathodes at $60\hat{A}^{\circ}$ C by SiO[sub 2] Dry Coating for Li-lon Batteries. Journal of the Electrochemical Society, 2010, 157, A625.	1.3	140
277	Nanocomposite of Amorphous Ge and Sn Nanoparticles as an Anode Material for Li Secondary Battery. Journal of the Electrochemical Society, 2009, 156, A277.	1.3	72
278	Reversible and Highâ€Capacity Nanostructured Electrode Materials for Liâ€lon Batteries. Advanced Functional Materials, 2009, 19, 1497-1514.	7.8	458
279	Silicon Nanotube Battery Anodes. Nano Letters, 2009, 9, 3844-3847.	4.5	1,362
280	Effect of LiCoO[sub 2] Cathode Nanoparticle Size on High Rate Performance for Li-lon Batteries. Journal of the Electrochemical Society, 2009, 156, A430.	1.3	124
281	Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy and Environmental Science, 2009, 2, 818.	15.6	814
282	Electrochemical behavior of Ge and GeX2 ($X = O$, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium. Electrochimica Acta, 2008, 53, 5058-5064.	2.6	98
283	Structural changes of bare and AlPO4-coated LixCoO2 (x=0.24 and 0.1) upon thermal annealing ≥200°C. Journal of Power Sources, 2008, 179, 780-784.	4.0	4
284	PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochemistry Communications, 2008, 10, 1478-1481.	2.3	133
285	Tio2@Sn core–shell nanotubes for fast and high density Li-ion storage material. Electrochemistry Communications, 2008, 10, 1669-1672.	2.3	52
286	Control of the carbon shell thickness in Sn70Ge30@carbon core–shell nanoparticles using alkyl terminators: Its implication for high-capacity lithium battery anode materials. Electrochimica Acta, 2008, 54, 461-466.	2.6	14
287	Synthesis of Nanowire and Hollow LiFePO (sub > 4 < /sub > Cathodes for High-Performance Lithium Batteries. Chemistry of Materials, 2008, 20, 4560-4564.	3.2	176
288	Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. Journal of Materials Chemistry, 2008, 18, 771.	6.7	259

#	Article	IF	CITATIONS
289	Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell. Journal of Materials Chemistry, 2008, 18, 5880.	6.7	89
290	Electrochemical and Structural Characterizations of InSb Nanoparticles Prepared Using a Sodium Naphthalenide Reduction Method. Journal of the Electrochemical Society, 2008, 155, A825.	1.3	7
291	Dependence of Electrochemical Behavior on Concentration and Annealing Temperature of Li[sub x]CoPO[sub 4] Phase-Grown LiNi[sub 0.8]Co[sub 0.16]Al[sub 0.04]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2008, 155, A228.	1.3	25
292	VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. Journal of Materials Chemistry, 2008, 18, 2257.	6.7	80
293	Superior Lithium Electroactive Mesoporous Si@Carbon Coreâ^'Shell Nanowires for Lithium Battery Anode Material. Nano Letters, 2008, 8, 3688-3691.	4.5	489
294	Layered Li _{0.88} [Li _{0.18} Co _{0.33} Mn _{0.49}]O ₂ Nanowires for Fast and High Capacity Li-lon Storage Material. Nano Letters, 2008, 8, 957-961.	4.5	102
295	Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material. Chemistry of Materials, 2008, 20, 1679-1681.	3.2	105
296	M[sub 3](PO[sub 4])[sub 2]-Nanoparticle-Coated LiCoO[sub 2] vs LiCo[sub 0.96]M[sub 0.04]O[sub 2](M=Mgâ€,andâ€,Zn) on Electrochemical and Storage Characteristics. Journal of the Electrochemical Society, 2008, 155, A201.	1.3	35
297	Storage Characteristics of LiNi[sub 0.8]Co[sub 0.1+x]Mn[sub 0.1â^x]O[sub 2] (x=0, 0.03, and 0.06) Cathode Materials for Lithium Batteries. Journal of the Electrochemical Society, 2008, 155, A239.	1.3	121
298	Synthesis and Optimization of Nanoparticle Ge Confined in a Carbon Matrix for Lithium Battery Anode Material. Journal of the Electrochemical Society, 2007, 154, A343.	1.3	91
299	Lithium-Reactive Co[sub 3](PO[sub 4])[sub 2] Nanoparticle Coating on High-Capacity LiNi[sub 0.8]Co[sub 0.16]Al[sub 0.04]O[sub 2] Cathode Material for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2007, 154, A495.	1.3	120
300	Microstructure of LiCoO ₂ with and without "AlPO ₄ ―Nanoparticle Coating:  Combined STEM and XPS Studies. Chemistry of Materials, 2007, 19, 5748-5757.	3.2	259
301	Comparison of Structural Changes in Fully Delithiated Li[sub x][Ni[sub 1â•3]Co[sub 1â•3]Mn[sub 1â•3]]O[sub 2] and Li[sub x][Ni[sub 0.33]Co[sub 0.33]Mn[sub 0.30]Mg[sub 0.04]]O[sub 1.96]F[sub 0.04] Cathodes (x=0) upon Thermal Annealing. Journal of the Electrochemical Society, 2007, 154, A561.	1.3	8
302	Rate Characteristics of Anatase TiO[sub 2] Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature. Journal of the Electrochemical Society, 2007, 154, A542.	1.3	116
303	The electrochemical lithium reactions of monoclinic ZnP2 material. Journal of Materials Chemistry, 2007, 17, 3161.	6.7	40
304	Li Reaction Behavior of GaP Nanoparticles Prepared by a Sodium Naphthalenide Reduction Method. Journal of Physical Chemistry C, 2007, 111, 1186-1193.	1.5	31
305	Sn ₇₈ Ge ₂₂ @Carbon Coreâ^'Shell Nanowires as Fast and High-Capacity Lithium Storage Media. Nano Letters, 2007, 7, 2638-2641.	4.5	125
306	Synthesis and Morphological, Electrochemical Characterization of Sn[sub 92]Co[sub 8] Nanoalloys for Anode Materials in Li Secondary Batteries. Journal of the Electrochemical Society, 2007, 154, A462.	1.3	42

#	Article	IF	Citations
307	Sn0.9Si0.1/Carbon Coreâ^'Shell Nanoparticles for High-Density Lithium Storage Materials. Chemistry of Materials, 2007, 19, 982-986.	3.2	58
308	Synthesis and Characterization of Li[Ni0.41Li0.08Mn0.51]O2 Nanoplates for Li Battery Cathode Material. Journal of Physical Chemistry C, 2007, 111, 3192-3196.	1.5	32
309	Spinel Li[sub 4]Ti[sub 5]O[sub 12] Nanowires for High-Rate Li-Ion Intercalation Electrode. Electrochemical and Solid-State Letters, 2007, 10, A81.	2.2	133
310	Suppression of structural degradation of LiNi0.9Co0.1O2 cathode at 90°C by AlPO4-nanoparticle coating. Current Applied Physics, 2007, 7, 172-175.	1.1	19
311	Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries. Electrochemistry Communications, 2007, 9, 149-154.	2.3	77
312	Li0.93[Li0.21Co0.28Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite. Electrochemistry Communications, 2007, 9, 1041-1046.	2.3	23
313	Synthesis and electrochemical properties of Sn87Co13 alloys by NaBH4 and sodium naphthalenide reduction methods. Electrochimica Acta, 2007, 52, 4197-4201.	2.6	25
314	3-Chloroanisole for overcharge protection of a Li-ion cell. Electrochimica Acta, 2007, 52, 7404-7408.	2.6	20
315	Surface and bulk structure investigation of fully delithiated bare and AlPO4-coated LixCoO2 (x=0) cathode materials annealed between 200 and 400ŰC. Journal of Power Sources, 2007, 174, 895-899.	4.0	7
316	Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots. Electrochimica Acta, 2007, 52, 4663-4668.	2.6	39
317	Water Adsorption and Storage Characteristics of Optimized LiCoO[sub 2] and LiNi[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]O[sub 2] Composite Cathode Material for Li-lon Cells. Journal of the Electrochemical Society, 2006, 153, A935.	1.3	80
318	Enhancement of the electrochemical properties of o-LiMnO2 cathodes at elevated temperature by lithium and fluorine additions. Journal of Power Sources, 2006, 154, 268-272.	4.0	40
319	Improvement of 12 V overcharge behavior of LiCoO2 cathode material by LiNiO.8CoO.1MnO.1O2 addition in a Li-ion cell. Journal of Power Sources, 2006, 153, 345-349.	4.0	5
320	SnO[sub 2] Filled Mesoporous Tin Phosphate. Electrochemical and Solid-State Letters, 2006, 9, A373.	2.2	5
321	Elimination of Extraneous Irreversible Capacity in Mesoporous Tin Phosphate Anode by Amorphous Carbon Coating. Electrochemical and Solid-State Letters, 2006, 9, A156.	2.2	19
322	Observation of Reversible Pore Change in Mesoporous Tin Phosphate Anode Material during Li Alloying/Dealloying. Journal of the Electrochemical Society, 2006, 153, A1633.	1.3	16
323	Effect of Anisotropic Volume Change in Tin Phosphate Nanoparticle Anode Material with Mesocellular Foam Structure on Capacity Retention. Electrochemical and Solid-State Letters, 2006, 9, A311.	2.2	8
324	Structural Characterization of the Surface-Modified Li[sub x]Ni[sub 0.9]Co[sub 0.1]O[sub 2] Cathode Materials by MPO[sub 4] Coating (M=Al, Ce, SrH, and Fe) for Li-Ion Cells. Journal of the Electrochemical Society, 2006, 153, A781.	1.3	64

#	Article	IF	CITATIONS
325	Washing Effect of a LiNi[sub 0.83]Co[sub 0.15]Al[sub 0.02]O[sub 2] Cathode in Water. Electrochemical and Solid-State Letters, 2006, 9, A19.	2.2	154
326	Direct carbon-black coating on LiCoO2 cathode using surfactant for high-density Li-ion cell. Journal of Power Sources, 2005, 139, 289-294.	4.0	76
327	Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. Journal of Power Sources, 2005, 146, 58-64.	4.0	117
328	Control of AlPO4-nanoparticle coating on LiCoO2 by using water or ethanol. Electrochimica Acta, 2005, 50, 4182-4187.	2.6	39
329	Effect of Pore Size and Pore Wall Thickness of Mesoporous Phase in Tin Phosphate Composite on Electrochemical Cycling. Electrochemical and Solid-State Letters, 2005, 8, A452.	2.2	14
330	Phase Transition of Bare and Coated Li[sub x]CoO[sub 2] (x=0.4 and 0.24) at $300 \hat{A}^{\circ}$ C. Journal of the Electrochemical Society, 2005, 152, A1824.	1.3	10
331	Monomer-Capped Tin Metal Nanoparticles for Anode Materials in Lithium Secondary Batteries. Chemistry of Materials, 2005, 17, 3320-3324.	3.2	58
332	Controlled Nanoparticle Metal Phosphates (Metal=Al, Fe, Ce, and Sr) Coatings on LiCoO[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2005, 152, A1142.	1.3	95
333	Surface-Stabilized Amorphous Germanium Nanoparticles for Lithium-Storage Material. Journal of Physical Chemistry B, 2005, 109, 20719-20723.	1,2	112
334	Critical Size of a Nano SnO2Electrode for Li-Secondary Battery. Chemistry of Materials, 2005, 17, 3297-3301.	3.2	517
335	Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery. Chemistry of Materials, 2005, 17, 1926-1929.	3.2	279
336	Changes in the Lattice Constants of Thin-Film LiCoO[sub 2] Cathodes at the 4.2 V Charged State. Journal of the Electrochemical Society, 2004, 151, A1063.	1.3	30
337	Nanoparticle iron-phosphate anode material for Li-ion battery. Applied Physics Letters, 2004, 85, 5875-5877.	1.5	78
338	Effect of AlPO[sub 4]-Nanoparticle Coating Concentration on High-Cutoff-Voltage Electrochemical Performances in LiCoO[sub 2]. Journal of the Electrochemical Society, 2004, 151, A801.	1.3	78
339	Comparison of Overcharge Behavior of AlPO[sub 4]-Coated LiCoO[sub 2] and LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials in Li-Ion Cells. Journal of the Electrochemical Society, 2 151, A1707.	O Q4 ,	118
340	Synthesis, Thermal, and Electrochemical Properties of AlPO[sub 4]-Coated LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials for a Li-lon Cell. Journal of the Electrochemical Society, 2004, 151, A1899.	1.3	195
341	A Mesoporous/Crystalline Composite Material Containing Tin Phosphate for Use as the Anode in Lithium-lon Batteries. Angewandte Chemie - International Edition, 2004, 43, 5987-5990.	7.2	137
342	Enhanced electrochemical properties of SnO2 anode by AlPO4 coating. Electrochimica Acta, 2004, 49, 4405-4410.	2.6	41

#	Article	IF	CITATIONS
343	Dependence of AIPO4 coating thickness on overcharge behaviour of LiCoO2 cathode material at 1 and 2 C rates. Journal of Power Sources, 2004, 126, 186-189.	4.0	39
344	Correlation between local strain and cycle-life performance of AlPO4-coated LiCoO2 cathodes. Journal of Power Sources, 2004, 126, 190-192.	4.0	61
345	Electrochemical Stability of Thin-Film LiCoO2Cathodes by Aluminum-Oxide Coating. Chemistry of Materials, 2003, 15, 1505-1511.	3.2	132
346	A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AlPO4 Nanoparticles. Angewandte Chemie - International Edition, 2003, 42, 1618-1621.	7. 2	334
347	Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability. Electrochimica Acta, 2003, 48, 2807-2811.	2.6	57
348	Improved thermal stability of LiCoO2 by nanoparticle AlPO4 coating with respect to spinel Li1.05Mn1.95O4. Electrochemistry Communications, 2003, 5, 146-148.	2.3	54
349	Effect of P2O5 and AlPO4 Coating on LiCoO2 Cathode Material. Chemistry of Materials, 2003, 15, 3190-3193.	3.2	89
350	Suppression of Cobalt Dissolution from the LiCoO[sub 2] Cathodes with Various Metal-Oxide Coatings. Journal of the Electrochemical Society, 2003, 150, A1723.	1.3	185
351	The Effect of a Metal-Oxide Coating on the Cycling Behavior at 55°C in Orthorhombic LiMnO[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2002, 149, A288.	1.3	69
352	The Effect of Al[sub 2]O[sub 3] Coating on the Cycle Life Performance in Thin-Film LiCoO[sub 2] Cathodes. Journal of the Electrochemical Society, 2002, 149, A1337.	1.3	71
353	Infrared spectroscopy of glasses and polycrystals in the series xCs2S+(1â^'x)B2S3. Journal of Non-Crystalline Solids, 2002, 298, 176-192.	1.5	8
354	Ion-implantation modification of lithium–phosphorus oxynitride thin-films. Journal of Power Sources, 2002, 109, 214-219.	4.0	29
355	High-Performance ZrO[sub 2]-Coated LiNiO[sub 2] Cathode Material. Electrochemical and Solid-State Letters, 2001, 4, A159.	2.2	127
356	Raman spectroscopy studies of xNa2S+(1â^'x)B2S3 glasses and polycrystals. Journal of Non-Crystalline Solids, 2001, 279, 97-109.	1.5	30
357	Stabilization of Spinel-like Phase Transformation of CoO. Chemistry of Materials, 2001, 13, 4537-4541.	3.2	34
358	Enhanced Structural Stability of o-LiMnO2 by Solâ "Gel Coating of Al2O3. Chemistry of Materials, 2001, 13, 18-20.	3.2	79
359	LiCoO[sub 2] Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase. Journal of the Electrochemical Society, 2001, 148, A1110.	1.3	222
360	Correlation of capacity fading of LiMn2O4 cathode material on $55 \hat{A}^{\circ} \text{C}$ cycling with their surface area measured by a methylene blue adsorption. Solid State Ionics, 2001, 138, 267-271.	1.3	18

#	Article	IF	CITATIONS
361	Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. Journal of Power Sources, 2001, 92, 35-39.	4.0	105
362	Zero-Strain Intercalation Cathode for Rechargeable Li-lon Cell. Angewandte Chemie - International Edition, 2001, 40, 3367-3369.	7.2	441
363	LiNi0.74Co0.26-xMgxO2Cathode Material for a Li-Ion Cell. Chemistry of Materials, 2000, 12, 3089-3094.	3.2	117
364	Static 11B NMR studies of the short range order in alkali metal modified B2S3 glasses. Journal of Non-Crystalline Solids, 2000, 270, 205-214.	1.5	9
365	Electrochemical Properties and Thermal Stability of Li[sub a]Ni[sub $1\hat{a}^*x$]CO[sub x]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2000, 147, 15.	1.3	181
366	Novel LiCoO2Cathode Material with Al2O3Coating for a Li Ion Cell. Chemistry of Materials, 2000, 12, 3788-3791.	3.2	599
367	Enhancement of Thermal Stability of LiCoO[sub 2] by LiMn[sub 2]O[sub 4] Coating. Electrochemical and Solid-State Letters, 1999, 2, 253.	2.2	85
368	Effect of Preparation Methods of LiNi1 â^' x Co x  O 2 Cathode Materials on Their Chemical Stru Electrode Performance. Journal of the Electrochemical Society, 1999, 146, 3571-3576.	ucture and	l 146
369	Improvement of Structural Stability of LiMn[sub 2]O[sub 4] Cathode Material on 55°C Cycling by Sol-Gel Coating of LiCoO[sub 2]. Electrochemical and Solid-State Letters, 1999, 2, 607.	2.2	93
370	Electrochemical Properties of GeS2â€Based Glassâ€Polymer Composite Electrolytes for Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1998, 145, 1949-1952.	1.3	15
371	Preparation and electrochemical properties of glass-polymer composite electrolytes for lithium batteries. Electrochimica Acta, 1997, 42, 1481-1488.	2.6	32
372	Density measurements of xRb2S + (1 â^' x)B2S3 (0 â‰\$ â‰\$0.75) glasses: correlation with short range order. Journal of Non-Crystalline Solids, 1996, 194, 319-325.	1.5	4
373	Density of xNa2S.(1 - x)B2S3(x = 0 to 0.8) Glasses: Correlation with Short-Range Order. Journal of the American Ceramic Society, 1995, 78, 3329-3335.	1.9	9
374	Infrared spectroscopy of glasses and polycrystals in the series xK2S + (1-x)B2S3. Journal of Non-Crystalline Solids, 1995, 182, 248-256.	1.5	11
375	Density measurements of xK2S + $(1 - x)B2S3$ (0 â@½ x â@½ 0.75) glasses: correlation with short range order. Journal of Non-Crystalline Solids, 1995, 190, 244-250.	1.5	5
376	Infrared spectra of lithium thioborate glasses and polycrystals. Journal of Non-Crystalline Solids, 1994, 170, 182-189.	1.5	14
377	Infrared Spectroscopy of Wide Composition Range xNa2S + $(1 - x)B2S3$ Glasses. Journal of the American Ceramic Society, 1993, 76, 2753-2759.	1.9	15
378	Enhanced Structural Stability of o-LiMnO2 by Solâ^Gel Coating of Al2O3., 0,,.		3