
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4258318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Challenges Facing Lithium Batteries and Electrical Double‣ayer Capacitors. Angewandte Chemie - International Edition, 2012, 51, 9994-10024.	7.2	2,407
2	Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Advanced Energy Materials, 2011, 1, 34-50.	10.2	1,906
3	Nickelâ€Rich Layered Lithium Transitionâ€Metal Oxide for Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 4440-4457.	7.2	1,512
4	Silicon Nanotube Battery Anodes. Nano Letters, 2009, 9, 3844-3847.	4.5	1,362
5	MoS ₂ Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials. Nano Letters, 2011, 11, 4826-4830.	4.5	991
6	Spindle-like Mesoporous α-Fe ₂ O ₃ Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Letters, 2012, 12, 4988-4991.	4.5	874
7	A Critical Size of Silicon Nanoâ€Anodes for Lithium Rechargeable Batteries. Angewandte Chemie - International Edition, 2010, 49, 2146-2149.	7.2	860
8	Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy and Environmental Science, 2009, 2, 818.	15.6	814
9	Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016, 11, 601-625.	6.2	738
10	Recent Progress in Nonâ€Precious Catalysts for Metalâ€Air Batteries. Advanced Energy Materials, 2012, 2, 816-829.	10.2	652
11	Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nature Communications, 2013, 4, 2076.	5.8	630
12	Novel LiCoO2Cathode Material with Al2O3Coating for a Li Ion Cell. Chemistry of Materials, 2000, 12, 3788-3791.	3.2	599
13	Prospect and Reality of Niâ€Rich Cathode for Commercialization. Advanced Energy Materials, 2018, 8, 1702028.	10.2	574
14	Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy, 2016, 1, .	19.8	563
15	Material design and engineering of next-generation flow-battery technologies. Nature Reviews Materials, 2017, 2, .	23.3	559
16	Who will drive electric vehicles, olivine or spinel?. Energy and Environmental Science, 2011, 4, 1621.	15.6	553
17	Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today, 2014, 9, 604-630.	6.2	545
18	Critical Size of a Nano SnO2Electrode for Li-Secondary Battery. Chemistry of Materials, 2005, 17, 3297-3301.	3.2	517

#	Article	IF	CITATIONS
19	Metal (Ni, Co)â€Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. Advanced Functional Materials, 2015, 25, 5799-5808.	7.8	490
20	Superior Lithium Electroactive Mesoporous Si@Carbon Coreâ^'Shell Nanowires for Lithium Battery Anode Material. Nano Letters, 2008, 8, 3688-3691.	4.5	489
21	Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering Reports, 2011, 72, 203-252.	14.8	467
22	Integration of Graphite and Silicon Anodes for the Commercialization of Highâ€Energy Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 110-135.	7.2	460
23	Reversible and Highâ€Capacity Nanostructured Electrode Materials for Li″on Batteries. Advanced Functional Materials, 2009, 19, 1497-1514.	7.8	458
24	A New Coating Method for Alleviating Surface Degradation of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode Material: Nanoscale Surface Treatment of Primary Particles. Nano Letters, 2015, 15, 2111-2119.	4.5	452
25	A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer. Nano Letters, 2013, 13, 1145-1152.	4.5	442
26	Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell. Angewandte Chemie - International Edition, 2001, 40, 3367-3369.	7.2	441
27	Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10, 1392.	5.8	424
28	Graphene/Grapheneâ€Tube Nanocomposites Templated from Cageâ€Containing Metalâ€Organic Frameworks for Oxygen Reduction in Li–O ₂ Batteries. Advanced Materials, 2014, 26, 1378-1386.	11.1	398
29	Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2014, 6, 4063-4073.	4.0	398
30	Li―and Mnâ€Rich Cathode Materials: Challenges to Commercialization. Advanced Energy Materials, 2017, 7, 1601284.	10.2	383
31	Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today, 2011, 6, 28-41.	6.2	381
32	Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2015, 54, 9654-9658.	7.2	372
33	Allâ€Solidâ€State Cableâ€Type Flexible Zinc–Air Battery. Advanced Materials, 2015, 27, 1396-1401.	11.1	363
34	Nanocarbon Electrocatalysts for Oxygen Reduction in Alkaline Media for Advanced Energy Conversion and Storage. Advanced Energy Materials, 2014, 4, 1301415.	10.2	351
35	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie - International Edition, 2021, 60, 18821-18829.	7.2	346
36	A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AlPO4 Nanoparticles. Angewandte Chemie - International Edition, 2003, 42, 1618-1621.	7.2	334

#	Article	IF	CITATIONS
37	Cableâ€Type Flexible Lithium Ion Battery Based on Hollow Multiâ€Helix Electrodes. Advanced Materials, 2012, 24, 5192-5197.	11.1	331
38	Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule, 2017, 1, 47-60.	11.7	329
39	A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Nâ€Doped Ketjenblack Incorporated into Fe/Fe ₃ Câ€Functionalized Melamine Foam. Angewandte Chemie - International Edition, 2013, 52, 1026-1030.	7.2	324
40	Flexible Dimensional Control of Highâ€Capacity Liâ€Ionâ€Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Advanced Materials, 2010, 22, 415-418.	11.1	321
41	Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nature Communications, 2017, 8, 14589.	5.8	306
42	Porous Si anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 2010, 20, 4009.	6.7	305
43	Synthesis and Characterization of Patronite Form of Vanadium Sulfide on Graphitic Layer. Journal of the American Chemical Society, 2013, 135, 8720-8725.	6.6	300
44	Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 176-183.	15.6	299
45	A Bifunctional Perovskite Catalyst for Oxygen Reduction and Evolution. Angewandte Chemie - International Edition, 2014, 53, 4582-4586.	7.2	294
46	Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for Highâ€Rate Lithium Batteries. Angewandte Chemie - International Edition, 2011, 50, 9647-9650.	7.2	288
47	Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery. Chemistry of Materials, 2005, 17, 1926-1929.	3.2	279
48	Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nature Communications, 2017, 8, 812.	5.8	274
49	Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nature Energy, 2021, 6, 362-371.	19.8	274
50	High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy and Environmental Science, 2011, 4, 425-428.	15.6	265
51	Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting. Nano Letters, 2017, 17, 4202-4209.	4.5	263
52	Ketjenblack Carbon Supported Amorphous Manganese Oxides Nanowires as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Solutions. Nano Letters, 2011, 11, 5362-5366.	4.5	261
53	Catalytic Role of Ge in Highly Reversible GeO ₂ /Ge/C Nanocomposite Anode Material for Lithium Batteries. Nano Letters, 2013, 13, 1230-1236.	4.5	261
54	Microstructure of LiCoO ₂ with and without "AlPO ₄ ―Nanoparticle Coating: Combined STEM and XPS Studies. Chemistry of Materials, 2007, 19, 5748-5757.	3.2	259

#	Article	IF	CITATIONS
55	Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. Journal of Materials Chemistry, 2008, 18, 771.	6.7	259
56	Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries. Advanced Functional Materials, 2010, 20, 3818-3834.	7.8	257
57	Surface Engineering Strategies of Layered LiCoO ₂ Cathode Material to Realize Highâ€Energy and Highâ€Voltage Liâ€Ion Cells. Advanced Energy Materials, 2017, 7, 1601507.	10.2	257
58	High Performance LiMn ₂ O ₄ Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries. Nano Letters, 2014, 14, 993-999.	4.5	248
59	Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 2015, 48, 84-101.	15.8	244
60	Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500110.	10.2	240
61	Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for Electrical Energy Storage. Nano Letters, 2012, 12, 3483-3490.	4.5	234
62	Highâ€Performance Macroporous Bulk Silicon Anodes Synthesized by Templateâ€Free Chemical Etching. Advanced Energy Materials, 2012, 2, 878-883.	10.2	232
63	Selfâ€Assembled Germanium/Carbon Nanostructures as Highâ€Power Anode Material for the Lithiumâ€Ion Battery. Angewandte Chemie - International Edition, 2012, 51, 5657-5661.	7.2	231
64	Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries. Accounts of Chemical Research, 2013, 46, 1161-1170.	7.6	231
65	Critical Thickness of SiO ₂ Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Li″on Batteries. Advanced Materials, 2013, 25, 4498-4503.	11.1	231
66	LiCoO[sub 2] Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase. Journal of the Electrochemical Society, 2001, 148, A1110.	1.3	222
67	A Highly Efficient and Robust Cation Ordered Perovskite Oxide as a Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. ACS Nano, 2017, 11, 11594-11601.	7.3	219
68	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
69	Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy and Environmental Science, 2014, 7, 3727-3735.	15.6	218
70	A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1449-1459.	15.6	213
71	Metal–Organic Frameworkâ€Derived Bambooâ€ŀike Nitrogenâ€Doped Graphene Tubes as an Active Matrix for Hybrid Oxygenâ€Reduction Electrocatalysts. Small, 2015, 11, 1443-1452.	5.2	209
72	A Tannic Acid–Derived Nâ€; Pâ€Codoped Carbonâ€Supported Ironâ€Based Nanocomposite as an Advanced Trifunctional Electrocatalyst for the Overall Water Splitting Cells and Zinc–Air Batteries. Advanced Energy Materials, 2019, 9, 1803312.	10.2	209

#	Article	IF	CITATIONS
73	Challenges in Accommodating Volume Change of Si Anodes for Liâ€Ion Batteries. ChemElectroChem, 2015, 2, 1645-1651.	1.7	204
74	One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials. Journal of Materials Chemistry, 2011, 21, 9825.	6.7	200
75	A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for Highâ€Performance 0.4Li ₂ MnO _{3–} 0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{ Cathode Materials. Advanced Energy Materials. 2014. 4. 1400631.}	2 <i><</i> /sub>	196
76	Synthesis, Thermal, and Electrochemical Properties of AlPO[sub 4]-Coated LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials for a Li-Ion Cell. Journal of the Electrochemical Society, 2004, 151, A1899.	1.3	195
77	lonic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2011, 4, 4148.	15.6	191
78	Lithiumâ€Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint. Advanced Energy Materials, 2012, 2, 780-800.	10.2	190
79	Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - an Asian Journal, 2016, 11, 10-21.	1.7	190
80	Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. Energy and Environmental Science, 2011, 4, 5013.	15.6	188
81	High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. Nano Energy, 2016, 20, 315-325.	8.2	187
82	Suppression of Cobalt Dissolution from the LiCoO[sub 2] Cathodes with Various Metal-Oxide Coatings. Journal of the Electrochemical Society, 2003, 150, A1723.	1.3	185
83	Electrochemical Properties and Thermal Stability of Li[sub a]Ni[sub 1â^'x]CO[sub x]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2000, 147, 15.	1.3	181
84	Spinelâ€Layered Coreâ€5hell Cathode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2011, 1, 821-828.	10.2	181
85	Elastic <i>a</i> -Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS Nano, 2014, 8, 8591-8599.	7.3	180
86	Synthesis of Nanowire and Hollow LiFePO ₄ Cathodes for High-Performance Lithium Batteries. Chemistry of Materials, 2008, 20, 4560-4564.	3.2	176
87	Low Loading of Rh <i>_x</i> P and RuP on N, P Codoped Carbon as Two Trifunctional Electrocatalysts for the Oxygen and Hydrogen Electrode Reactions. Advanced Energy Materials, 2018, 8, 1801478.	10.2	173
88	Countering Voltage Decay and Capacity Fading of Lithiumâ€Rich Cathode Material at 60 °C by Hybrid Surface Protection Layers. Advanced Energy Materials, 2015, 5, 1500274.	10.2	172
89	Feasibility of Cathode Surface Coating Technology for Highâ€Energy Lithiumâ€ion and Beyondâ€Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605807.	11.1	168
90	Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery. ACS Nano, 2015, 9, 6493-6501.	7.3	167

#	Article	IF	CITATIONS
91	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
92	Metal-Free Ketjenblack Incorporated Nitrogen-Doped Carbon Sheets Derived from Gelatin as Oxygen Reduction Catalysts. Nano Letters, 2014, 14, 1870-1876.	4.5	155
93	Washing Effect of a LiNi[sub 0.83]Co[sub 0.15]Al[sub 0.02]O[sub 2] Cathode in Water. Electrochemical and Solid-State Letters, 2006, 9, A19.	2.2	154
94	Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2017, 10, 129-136.	15.6	154
95	Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1552-1562.	15.6	154
96	A New High Power LiNi _{0.81} Co _{0.1} Al _{0.09} O ₂ Cathode Material for Lithiumâ€ion Batteries. Advanced Energy Materials, 2014, 4, 1301583.	10.2	153
97	Issues and Challenges Facing Flexible Lithiumâ€ion Batteries for Practical Application. Small, 2018, 14, e1702989.	5.2	152
98	Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries. Energy and Environmental Science, 2016, 9, 1251-1257.	15.6	147
99	Effect of Preparation Methods of LiNi1 â^' x Co x  O 2 Cathode Materials on Their Chemical Stru Electrode Performance. Journal of the Electrochemical Society, 1999, 146, 3571-3576.	cture and	146
100	Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials. Nano Letters, 2014, 14, 5965-5972.	4.5	145
101	Fully Conjugated Phthalocyanine Copper Metal–Organic Frameworks for Sodium–lodine Batteries with Longâ€Time ycling Durability. Advanced Materials, 2020, 32, e1905361.	11.1	143
102	Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge. Journal of the Electrochemical Society, 2012, 159, A1308-A1314.	1.3	141
103	The Heterostructure of Ru ₂ P/WO ₃ /NPC Synergistically Promotes H ₂ O Dissociation for Improved Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 4110-4116.	7.2	141
104	Significant Improvement of LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathodes at 60°C by SiO[sub 2] Dry Coating for Li-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A625.	1.3	140
105	Novel Core‧hell Sn u Anodes for Lithium Rechargeable Batteries Prepared by a Redoxâ€Transmetalation Reaction. Advanced Materials, 2010, 22, 5154-5158.	11.1	138
106	A Mesoporous/Crystalline Composite Material Containing Tin Phosphate for Use as the Anode in Lithium-Ion Batteries. Angewandte Chemie - International Edition, 2004, 43, 5987-5990.	7.2	137
107	Spinel Li[sub 4]Ti[sub 5]O[sub 12] Nanowires for High-Rate Li-Ion Intercalation Electrode. Electrochemical and Solid-State Letters, 2007, 10, A81.	2.2	133
108	PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochemistry Communications, 2008, 10, 1478-1481.	2.3	133

#	Article	IF	CITATIONS
109	Electrochemical Stability of Thin-Film LiCoO2Cathodes by Aluminum-Oxide Coating. Chemistry of Materials, 2003, 15, 1505-1511.	3.2	132
110	Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes. Journal of Physical Chemistry C, 2011, 115, 9451-9457.	1.5	131
111	The role of nanoscale-range vanadium treatment in LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ cathode materials for Li-ion batteries at elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 13453-13460.	5.2	131
112	A Novel Lithiumâ€Đoping Approach for an Advanced Lithium Ion Capacitor. Advanced Energy Materials, 2011, 1, 1002-1006.	10.2	130
113	Boosting Reaction Homogeneity in Highâ€Energy Lithiumâ€ŀon Battery Cathode Materials. Advanced Materials, 2020, 32, e2003040.	11.1	130
114	High-Performance ZrO[sub 2]-Coated LiNiO[sub 2] Cathode Material. Electrochemical and Solid-State Letters, 2001, 4, A159.	2.2	127
115	Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide. Journal of the American Chemical Society, 2015, 137, 8499-8508.	6.6	127
116	Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. Journal of Power Sources, 2017, 357, 97-106.	4.0	127
117	The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nature Communications, 2022, 13, 1270.	5.8	126
118	Sn ₇₈ Ge ₂₂ @Carbon Coreâ^'Shell Nanowires as Fast and High-Capacity Lithium Storage Media. Nano Letters, 2007, 7, 2638-2641.	4.5	125
119	Advanced Technologies for Highâ€Energy Aluminum–Air Batteries. Advanced Materials, 2019, 31, e1804784.	11.1	125
120	Effect of LiCoO[sub 2] Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries. Journal of the Electrochemical Society, 2009, 156, A430.	1.3	124
121	Optimized Synthetic Conditions of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Materials for High Rate Lithium Batteries via Co-Precipitation Method. Journal of the Electrochemical Society, 2013, 160, A105-A111.	1.3	123
122	Flexible High-Energy Li-Ion Batteries with Fast-Charging Capability. Nano Letters, 2014, 14, 4083-4089.	4.5	122
123	Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nature Communications, 2021, 12, 838.	5.8	122
124	Storage Characteristics of LiNi[sub 0.8]Co[sub 0.1+x]Mn[sub 0.1â^'x]O[sub 2] (x=0, 0.03, and 0.06) Cathode Materials for Lithium Batteries. Journal of the Electrochemical Society, 2008, 155, A239.	1.3	121
125	Lithium-Reactive Co[sub 3](PO[sub 4])[sub 2] Nanoparticle Coating on High-Capacity LiNi[sub 0.8]Co[sub 0.16]Al[sub 0.04]O[sub 2] Cathode Material for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2007, 154, A495.	1.3	120
126	LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 precursors. Electrochimica Acta, 2010, 56, 333-339.	2.6	120

#	Article	IF	CITATIONS
127	Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-Ion Batteries. Nano Letters, 2013, 13, 3403-3407.	4.5	120
128	Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement. Nature Communications, 2018, 9, 3285.	5.8	119
129	Advances and Prospects of Sulfide Allâ€Solidâ€State Lithium Batteries via Oneâ€ŧoâ€One Comparison with Conventional Liquid Lithium Ion Batteries. Advanced Materials, 2019, 31, e1900376.	11.1	119
130	Comparison of Overcharge Behavior of AlPO[sub 4]-Coated LiCoO[sub 2] and LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials in Li-Ion Cells. Journal of the Electrochemical Society, 2 151, A1707.	OΩ 4 ,	118
131	Lithium reaction mechanism and high rate capability of VS ₄ –graphene nanocomposite as an anode material for lithium batteries. Journal of Materials Chemistry A, 2014, 2, 10847-10853.	5.2	118
132	LiNi0.74Co0.26-xMgxO2Cathode Material for a Li-Ion Cell. Chemistry of Materials, 2000, 12, 3089-3094.	3.2	117
133	Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. Journal of Power Sources, 2005, 146, 58-64.	4.0	117
134	Rate Characteristics of Anatase TiO[sub 2] Nanotubes and Nanorods for Lithium Battery Anode Materials at Room Temperature. Journal of the Electrochemical Society, 2007, 154, A542.	1.3	116
135	Fabrication of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3–} <i>_δ< Catalysts with Enhanced Electrochemical Performance by Removing an Inherent Heterogeneous Surface Film Laver, Advanced Materials, 2015, 27, 266-271.</i>	/i _{}1.1}	114
136	Siâ€Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 206-212.	10.2	113
137	Exploring Critical Factors Affecting Strain Distribution in 1D Siliconâ€Based Nanostructures for Lithiumâ€Ion Battery Anodes. Advanced Materials, 2018, 30, e1705430.	11.1	113
138	Surface-Stabilized Amorphous Germanium Nanoparticles for Lithium-Storage Material. Journal of Physical Chemistry B, 2005, 109, 20719-20723.	1.2	112
139	Calendering ompatible Macroporous Architecture for Silicon–Graphite Composite toward Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2003286.	11.1	111
140	Antimonyâ€Based Composites Loaded on Phosphorusâ€Doped Carbon for Boosting Faradaic Efficiency of the Electrochemical Nitrogen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 13329-13334.	7.2	108
141	Exploration of the Effective Location of Surface Oxygen Defects in Grapheneâ€Based Electrocatalysts for Allâ€Vanadium Redoxâ€Flow Batteries. Advanced Energy Materials, 2015, 5, 1401550.	10.2	107
142	Enhanced Intrinsic Catalytic Activity of λâ€MnO ₂ by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie - International Edition, 2016, 55, 8599-8604.	7.2	107
143	Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion. Advanced Energy Materials, 2019, 9, 1803121.	10.2	107
144	Unveiling Nickel Chemistry in Stabilizing Highâ€Voltage Cobaltâ€Rich Cathodes for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907903.	7.8	107

#	Article	IF	CITATIONS
145	Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nature Energy, 2021, 6, 1164-1175.	19.8	107
146	Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glueâ€Nanofiller for Advanced Liâ€Ion Battery Cathode. Advanced Materials, 2016, 28, 4705-4712.	11.1	106
147	Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. Journal of Power Sources, 2001, 92, 35-39.	4.0	105
148	Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material. Chemistry of Materials, 2008, 20, 1679-1681.	3.2	105
149	Quantum Confinement and Its Related Effects on the Critical Size of GeO ₂ Nanoparticles Anodes for Lithium Batteries. Nano Letters, 2014, 14, 1005-1010.	4.5	105
150	Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy, 2016, 26, 233-240.	8.2	105
151	Highâ€Performance Direct Methanol Fuel Cells with Preciousâ€Metalâ€Free Cathode. Advanced Science, 2016, 3, 1600140.	5.6	105
152	Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Physical Chemistry Chemical Physics, 2014, 16, 13568-13582.	1.3	104
153	Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 2048-2054.	5.2	104
154	Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2022, 307, 121204.	10.8	103
155	Layered Li _{0.88} [Li _{0.18} Co _{0.33} Mn _{0.49}]O ₂ Nanowires for Fast and High Capacity Li-Ion Storage Material. Nano Letters, 2008, 8, 957-961.	4.5	102
156	Oneâ€toâ€One Comparison of Graphiteâ€Blended Negative Electrodes Using Silicon Nanolayerâ€Embedded Graphite versus Commercial Benchmarking Materials for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700071.	10.2	100
157	Stabilization of Li Metal Anode in DMSOâ€Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O ₂ Batteries. Advanced Energy Materials, 2017, 7, 1602605.	10.2	99
158	Electrochemical behavior of Ge and GeX2 (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium. Electrochimica Acta, 2008, 53, 5058-5064.	2.6	98
159	Composites of a Prussian Blue Analogue and Gelatinâ€Derived Nitrogenâ€Doped Carbon‣upported Porous Spinel Oxides as Electrocatalysts for a Zn–Air Battery. Advanced Energy Materials, 2016, 6, 1601052.	10.2	98
160	Oxygen Vacancy Diffusion and Condensation in Lithiumâ€lon Battery Cathode Materials. Angewandte Chemie - International Edition, 2019, 58, 10478-10485.	7.2	97
161	A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery. Advanced Energy Materials, 2019, 9, 1900694.	10.2	97
162	3D Amorphous Silicon on Nanopillar Copper Electrodes as Anodes for High-Rate Lithium-Ion Batteries. ACS Nano, 2014, 8, 1907-1912.	7.3	96

#	Article	IF	CITATIONS
163	Controlled Nanoparticle Metal Phosphates (Metal=Al, Fe, Ce, and Sr) Coatings on LiCoO[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2005, 152, A1142.	1.3	95
164	Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nature Communications, 2018, 9, 2924.	5.8	94
165	Improvement of Structural Stability of LiMn[sub 2]O[sub 4] Cathode Material on 55°C Cycling by Sol-Gel Coating of LiCoO[sub 2]. Electrochemical and Solid-State Letters, 1999, 2, 607.	2.2	93
166	Synthesis and Optimization of Nanoparticle Ge Confined in a Carbon Matrix for Lithium Battery Anode Material. Journal of the Electrochemical Society, 2007, 154, A343.	1.3	91
167	Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. Journal of Power Sources, 2013, 243, 267-273.	4.0	91
168	Cyclic Aminosilaneâ€Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Liâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 200012.	10.2	91
169	Nanostructured Electrocatalysts for Allâ€Vanadium Redox Flow Batteries. Chemistry - an Asian Journal, 2015, 10, 2096-2110.	1.7	90
170	Effect of P2O5 and AlPO4 Coating on LiCoO2 Cathode Material. Chemistry of Materials, 2003, 15, 3190-3193.	3.2	89
171	Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell. Journal of Materials Chemistry, 2008, 18, 5880.	6.7	89
172	Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. Journal of Materials Chemistry A, 2013, 1, 14548.	5.2	89
173	Organic atholyte ontaining Flexible Rechargeable Lithium Batteries. Advanced Materials, 2015, 27, 5141-5146.	11.1	88
174	Enhancement of Thermal Stability of LiCoO[sub 2] by LiMn[sub 2]O[sub 4] Coating. Electrochemical and Solid-State Letters, 1999, 2, 253.	2.2	85
175	Rechargeable Seawater Battery and Its Electrochemical Mechanism. ChemElectroChem, 2015, 2, 328-332.	1.7	85
176	A Tailored Bifunctional Electrocatalyst: Boosting Oxygen Reduction/Evolution Catalysis via Electron Transfer Between Nâ€Doped Graphene and Perovskite Oxides. Small, 2018, 14, e1802767.	5.2	85
177	Optimization of Carbon―and Binderâ€Free Au Nanoparticle oated Ni Nanowire Electrodes for Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2015, 5, 1401030.	10.2	84
178	Role of Li ₆ CoO ₄ Cathode Additive in Li-Ion Cells Containing Low Coulombic Efficiency Anode Material. Journal of the Electrochemical Society, 2012, 159, A1329-A1334.	1.3	82
179	Controllable Solid Electrolyte Interphase in Nickelâ€Rich Cathodes by an Electrochemical Rearrangement for Stable Lithiumâ€Ion Batteries. Advanced Materials, 2018, 30, 1704309.	11.1	81
180	Water Adsorption and Storage Characteristics of Optimized LiCoO[sub 2] and LiNi[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]O[sub 2] Composite Cathode Material for Li-Ion Cells. Journal of the Electrochemical Society, 2006, 153, A935.	1.3	80

#	Article	IF	CITATIONS
181	VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. Journal of Materials Chemistry, 2008, 18, 2257.	6.7	80
182	Flexible Morphology Design of 3Dâ€Macroporous LiMnPO ₄ Cathode Materials for Li Secondary Batteries: Ball to Flake. Advanced Energy Materials, 2011, 1, 347-351.	10.2	80
183	Selfâ€Induced Concentration Gradient in Nickelâ€Rich Cathodes by Sacrificial Polymeric Bead Clusters for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1602559.	10.2	80
184	Unveiling the Catalytic Origin of Nanocrystalline Yttrium Ruthenate Pyrochlore as a Bifunctional Electrocatalyst for Zn–Air Batteries. Nano Letters, 2017, 17, 3974-3981.	4.5	80
185	Enhanced Structural Stability ofo-LiMnO2by Solâ^Gel Coating of Al2O3. Chemistry of Materials, 2001, 13, 18-20.	3.2	79
186	Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nature Communications, 2019, 10, 475.	5.8	79
187	Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Materials, 2020, 26, 157-164.	9.5	79
188	Nanoparticle iron-phosphate anode material for Li-ion battery. Applied Physics Letters, 2004, 85, 5875-5877.	1.5	78
189	Effect of AlPO[sub 4]-Nanoparticle Coating Concentration on High-Cutoff-Voltage Electrochemical Performances in LiCoO[sub 2]. Journal of the Electrochemical Society, 2004, 151, A801.	1.3	78
190	Helical Silicon/Silicon Oxide Core–Shell Anodes Grown onto the Surface of Bulk Silicon. Nano Letters, 2011, 11, 4324-4328.	4.5	78
191	Tunable Internal and Surface Structures of the Bifunctional Oxygen Perovskite Catalysts. Advanced Energy Materials, 2015, 5, 1501560.	10.2	78
192	Highâ€Performance Heterostructured Cathodes for Lithiumâ€ion Batteries with a Niâ€Rich Layered Oxide Core and a Liâ€Rich Layered Oxide Shell. Advanced Science, 2016, 3, 1600184.	5.6	78
193	Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries. Electrochemistry Communications, 2007, 9, 149-154.	2.3	77
194	Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries. Nature Communications, 2018, 9, 3715.	5.8	77
195	Direct carbon-black coating on LiCoO2 cathode using surfactant for high-density Li-ion cell. Journal of Power Sources, 2005, 139, 289-294.	4.0	76
196	Quantification of Pseudocapacitive Contribution in Nanocage‧haped Silicon–Carbon Composite Anode. Advanced Energy Materials, 2019, 9, 1803480.	10.2	75
197	A Ternary Ni ₄₆ Co ₄₀ Fe ₁₄ Nanoalloyâ€Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc–Air Batteries. Advanced Materials, 2018, 30, e1803372.	11.1	73
198	Nanocomposite of Amorphous Ge and Sn Nanoparticles as an Anode Material for Li Secondary Battery. Journal of the Electrochemical Society, 2009, 156, A277.	1.3	72

#	Article	IF	CITATIONS
199	The Effect of Al[sub 2]O[sub 3] Coating on the Cycle Life Performance in Thin-Film LiCoO[sub 2] Cathodes. Journal of the Electrochemical Society, 2002, 149, A1337.	1.3	71
200	The Effect of a Metal-Oxide Coating on the Cycling Behavior at 55°C in Orthorhombic LiMnO[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2002, 149, A288.	1.3	69
201	Surface Mn Oxidation State Controlled Spinel LiMn ₂ O ₄ as a Cathode Material for Highâ€Energy Liâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1500440.	10.2	69
202	Recent progress on nanostructured 4V cathode materials for Li-ion batteries for mobile electronics. Materials Today, 2013, 16, 487-495.	8.3	68
203	Hierarchical Surface Atomic Structure of a Manganeseâ€Based Spinel Cathode for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 1153-1158.	7.2	68
204	Considering Critical Factors of Liâ€rich Cathode and Si Anode Materials for Practical Liâ€ion Cell Applications. Small, 2015, 11, 4058-4073.	5.2	67
205	Hollow Silicon Nanostructures via the Kirkendall Effect. Nano Letters, 2015, 15, 6914-6918.	4.5	67
206	Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy and Environmental Science, 2011, 4, 3395.	15.6	65
207	Structural Characterization of the Surface-Modified Li[sub x]Ni[sub 0.9]Co[sub 0.1]O[sub 2] Cathode Materials by MPO[sub 4] Coating (M=Al, Ce, SrH, and Fe) for Li-Ion Cells. Journal of the Electrochemical Society, 2006, 153, A781.	1.3	64
208	Scalable Integration of Li ₅ FeO ₄ towards Robust, Highâ€Performance Lithiumâ€Ion Hybrid Capacitors. ChemSusChem, 2014, 7, 3138-3144.	3.6	63
209	Germanium Silicon Alloy Anode Material Capable of Tunable Overpotential by Nanoscale Si Segregation. Nano Letters, 2015, 15, 4135-4142.	4.5	62
210	Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery. Nano Energy, 2015, 12, 161-168.	8.2	62
211	Correlation between local strain and cycle-life performance of AlPO4-coated LiCoO2 cathodes. Journal of Power Sources, 2004, 126, 190-192.	4.0	61
212	Improved Rate Capability and Thermal Stability of LiNi0.5Co0.2Mn0.3O2 Cathode Materials via Nanoscale SiP2O7 Coating. Journal of the Electrochemical Society, 2011, 158, A1354.	1.3	61
213	Significance of ferroelectric polarization in poly (vinylidene difluoride) binder for high-rate Li-ion diffusion. Nano Energy, 2017, 32, 255-262.	8.2	61
214	Critical Requirements for Rapid Charging of Rechargeable Al―and Liâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 9452-9455.	7.2	59
215	Monomer-Capped Tin Metal Nanoparticles for Anode Materials in Lithium Secondary Batteries. Chemistry of Materials, 2005, 17, 3320-3324.	3.2	58
216	Sn0.9Si0.1/Carbon Coreâ^'Shell Nanoparticles for High-Density Lithium Storage Materials. Chemistry of Materials, 2007, 19, 982-986.	3.2	58

#	Article	IF	CITATIONS
217	Exploring the Dominant Role of Atomic―and Nanoâ€Ruthenium as Active Sites for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media. Advanced Science, 2021, 8, e2004516.	5.6	58
218	P and Mo Dual Doped Ru Ultrasmall Nanoclusters Embedded in Pâ€Đoped Porous Carbon toward Efficient Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	10.2	58
219	Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability. Electrochimica Acta, 2003, 48, 2807-2811.	2.6	57
220	Critical Role of Cations in Lithium Sites on Extended Electrochemical Reversibility of Coâ€Rich Layered Oxide. Advanced Materials, 2017, 29, 1605578.	11.1	57
221	High power LiCoO2 cathode materials with ultra energy density for Li-ion cells. Electrochemistry Communications, 2010, 12, 992-995.	2.3	56
222	Catalytic Effects of B/N-co-Doped Porous Carbon Incorporated with Ketjenblack Nanoparticles for All-Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 2016, 163, A5144-A5149.	1.3	55
223	Bimetallic metal–organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 2099-2104.	5.2	55
224	Improved thermal stability of LiCoO2 by nanoparticle AlPO4 coating with respect to spinel Li1.05Mn1.95O4. Electrochemistry Communications, 2003, 5, 146-148.	2.3	54
225	Alloy-strain-output induced lattice dislocation in Ni ₃ FeN/Ni ₃ Fe ultrathin nanosheets for highly efficient overall water splitting. Journal of Materials Chemistry A, 2021, 9, 4036-4043.	5.2	54
226	In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material. Electrochimica Acta, 2010, 55, 8876-8882.	2.6	53
227	Tio2@Sn core–shell nanotubes for fast and high density Li-ion storage material. Electrochemistry Communications, 2008, 10, 1669-1672.	2.3	52
228	Nanoparticle–Nanorod Core–Shell LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel Cathodes with High Energy Density for Li-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A841.	1.3	52
229	Fabrication of Lamellar Nanosphere Structure for Effective Stressâ€Management in Largeâ€Volumeâ€Variation Anodes of Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1900970.	11.1	52
230	Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithiumâ€lon Battery Anodes. Advanced Energy Materials, 2020, 10, 1903400.	10.2	50
231	An Antiaging Electrolyte Additive for Highâ€Energyâ€Density Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000563.	10.2	50
232	Cobalt–Tanninâ€Frameworkâ€Derived Amorphous Coâ~'P/Coâ~'Nâ~'C on N, P Coâ€Doped Porous Carbon with Abundant Active Moieties for Efficient Oxygen Reactions and Water Splitting. ChemSusChem, 2019, 12, 830-838.	3.6	48
233	Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy and Environmental Science, 2020, 13, 1212-1221.	15.6	48
234	Unique Structural Changes of Threeâ€Dimensionally Ordered Macroporous TiO ₂ Electrode Materials During Electrochemical Cycling. Advanced Energy Materials, 2012, 2, 1425-1432.	10.2	46

#	Article	IF	CITATIONS
235	Low-Temperature Carbon Coating of Nanosized Li _{1.015} Al _{0.06} Mn _{1.925} O ₄ and High-Density Electrode for High-Power Li-Ion Batteries. Nano Letters, 2017, 17, 3744-3751.	4.5	45
236	Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithiumâ€Rich Cathodes with Superior Cycling Stability and Rate Capability. ChemElectroChem, 2017, 4, 56-65.	1.7	45
237	Oxygen Vacancy Diffusion and Condensation in Lithiumâ€lon Battery Cathode Materials. Angewandte Chemie, 2019, 131, 10588-10595.	1.6	45
238	Improvements to the Overpotential of Allâ€Solidâ€State Lithiumâ€Ion Batteries during the Past Ten Years. Advanced Energy Materials, 2020, 10, 2000904.	10.2	45
239	Gettering La Effect from La ₃ IrO ₇ as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction in Acid Media. Advanced Energy Materials, 2021, 11, 2003561.	10.2	45
240	High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite. Energy and Environmental Science, 2020, 13, 3723-3731.	15.6	44
241	Highâ€Performance, Layered, 3Dâ€LiCoO ₂ Cathodes with a Nanoscale Co ₃ O ₄ Coating via Chemical Etching. Advanced Energy Materials, 2011, 1, 368-372.	10.2	43
242	Excessâ€Li Localization Triggers Chemical Irreversibility in Li―and Mnâ€Rich Layered Oxides. Advanced Materials, 2020, 32, e2001944.	11.1	43
243	Synthesis and Morphological, Electrochemical Characterization of Sn[sub 92]Co[sub 8] Nanoalloys for Anode Materials in Li Secondary Batteries. Journal of the Electrochemical Society, 2007, 154, A462.	1.3	42
244	Carbon-coated nanoclustered LiMn0.71Fe0.29PO4 cathode for lithium-ion batteries. Journal of Power Sources, 2012, 216, 162-168.	4.0	42
245	Effect of Lithium Bis(oxalato)borate Additive on Electrochemical Performance of Li _{1.17} Ni _{0.17} Mn _{0.5} Co _{0.17} O ₂ Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A2012-A2019.	1.3	42
246	Fe, Al-co-doped NiSe ₂ nanoparticles on reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale, 2020, 12, 13680-13687.	2.8	42
247	Enhanced electrochemical properties of SnO2 anode by AlPO4 coating. Electrochimica Acta, 2004, 49, 4405-4410.	2.6	41
248	Enhancement of the electrochemical properties of o-LiMnO2 cathodes at elevated temperature by lithium and fluorine additions. Journal of Power Sources, 2006, 154, 268-272.	4.0	40
249	The electrochemical lithium reactions of monoclinic ZnP2 material. Journal of Materials Chemistry, 2007, 17, 3161.	6.7	40
250	Facile synthesis of hybrid graphene and carbon nanotubes as a metal-free electrocatalyst with active dual interfaces for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 9603.	5.2	40
251	Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. Nanoscale, 2014, 6, 10604-10610.	2.8	40
252	Postpatterned Electrodes for Flexible Nodeâ€Type Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1605773.	11.1	40

#	Article	IF	CITATIONS
253	Efficient CO2 Utilization via a Hybrid Na-CO2 System Based on CO2 Dissolution. IScience, 2018, 9, 278-285.	1.9	40
254	Development of Highâ€Energy Anodes for Allâ€Solidâ€State Lithium Batteries Based on Sulfide Electrolytes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
255	Material design and surface chemistry for advanced rechargeable zinc–air batteries. Chemical Science, 2022, 13, 6159-6180.	3.7	40
256	Dependence of AlPO4 coating thickness on overcharge behaviour of LiCoO2 cathode material at 1 and 2 C rates. Journal of Power Sources, 2004, 126, 186-189.	4.0	39
257	Control of AlPO4-nanoparticle coating on LiCoO2 by using water or ethanol. Electrochimica Acta, 2005, 50, 4182-4187.	2.6	39
258	Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots. Electrochimica Acta, 2007, 52, 4663-4668.	2.6	39
259	Optimized 4â€V Spinel Cathode Material with High Energy Density for Liâ€Ion Cells Operating at 60 °C. Advanced Energy Materials, 2013, 3, 1623-1629.	10.2	38
260	Flexible 3D Interlocking Lithiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801917.	10.2	38
261	Coupling a Low Loading of IrP ₂ , PtP ₂ , or Pd ₃ P with Heteroatom-Doped Nanocarbon for Overall Water-Splitting Cells and Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 16461-16473.	4.0	38
262	Nanocomb Architecture Design Using Germanium Selenide as High-Performance Lithium Storage Material. Chemistry of Materials, 2016, 28, 6146-6151.	3.2	37
263	Stress Relief Principle of Micronâ€Sized Anodes with Large Volume Variation for Practical Highâ€Energy Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 2004841.	7.8	37
264	High Performance LiCoO[sub 2] Cathode Materials at 60°C for Lithium Secondary Batteries Prepared by the Facile Nanoscale Dry-Coating Method. Journal of the Electrochemical Society, 2010, 157, A617.	1.3	36
265	Native Void Space for Maximum Volumetric Capacity in Silicon-Based Anodes. Nano Letters, 2019, 19, 8793-8800.	4.5	36
266	M[sub 3](PO[sub 4])[sub 2]-Nanoparticle-Coated LiCoO[sub 2] vs LiCo[sub 0.96]M[sub 0.04]O[sub 2](M=Mgâ€,andâ€,Zn) on Electrochemical and Storage Characteristics. Journal of the Electrochemical Society, 2008, 155, A201.	1.3	35
267	One-dimensional (1D) nanostructured and nanocomposited LiFePO4: its perspective advantages for cathode materials of lithium ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 19226.	1.3	35
268	Stabilization of Spinel-like Phase Transformation ofo-LiMnO2during 55 °C Cycling by Solâ^'Gel Coating of CoO. Chemistry of Materials, 2001, 13, 4537-4541.	3.2	34
269	Polyaniline Nanocoating on the Surface of Layered Li[Li _{0.2} Co _{0.1} Mn _{0.7}]O ₂ Nanodisks and Enhanced Cyclability as a Cathode Electrode for Rechargeable Lithium-Ion Battery. Journal of Physical Chemistry C. 2010, 114, 3675-3680.	1.5	34
270	Highly Efficient CO ₂ Utilization via Aqueous Zinc– or Aluminum–CO ₂ Systems for Hydrogen Gas Evolution and Electricity Production. Angewandte Chemie - International Edition, 2019, 58, 9506-9511.	7.2	33

#	Article	IF	CITATIONS
271	The Heterostructure of Ru ₂ P/WO ₃ /NPC Synergistically Promotes H ₂ O Dissociation for Improved Hydrogen Evolution. Angewandte Chemie, 2021, 133, 4156-4162.	1.6	33
272	Preparation and electrochemical properties of glass-polymer composite electrolytes for lithium batteries. Electrochimica Acta, 1997, 42, 1481-1488.	2.6	32
273	Synthesis and Characterization of Li[Ni0.41Li0.08Mn0.51]O2 Nanoplates for Li Battery Cathode Material. Journal of Physical Chemistry C, 2007, 111, 3192-3196.	1.5	32
274	Scalable Synthesis of Hollow β-SiC/Si Anodes <i>via</i> Selective Thermal Oxidation for Lithium-Ion Batteries. ACS Nano, 2020, 14, 11548-11557.	7.3	32
275	Latticeâ€Oxygenâ€Stabilized Li―and Mnâ€Rich Cathodes with Subâ€Micrometer Particles by Modifying the Excessâ€Li Distribution. Advanced Materials, 2021, 33, e2100352.	11.1	32
276	Ru atom-modified Co4N-CoF2 heterojunction catalyst for high-performance alkaline hydrogen evolution. Chemical Engineering Journal, 2021, 414, 128865.	6.6	32
277	Li Reaction Behavior of GaP Nanoparticles Prepared by a Sodium Naphthalenide Reduction Method. Journal of Physical Chemistry C, 2007, 111, 1186-1193.	1.5	31
278	Highly active bifunctional oxygen electrocatalysts derived from nickel– or cobalt–phytic acid xerogel for zinc–air batteries. Nanoscale, 2018, 10, 15834-15841.	2.8	31
279	Recent Advances and Prospects of Atomic Substitution on Layered Positive Materials for Lithiumâ€lon Battery. Advanced Energy Materials, 2021, 11, 2003197.	10.2	31
280	Raman spectroscopy studies of xNa2S+(1â^'x)B2S3 glasses and polycrystals. Journal of Non-Crystalline Solids, 2001, 279, 97-109.	1.5	30
281	Changes in the Lattice Constants of Thin-Film LiCoO[sub 2] Cathodes at the 4.2 V Charged State. Journal of the Electrochemical Society, 2004, 151, A1063.	1.3	30
282	V[sub 2]O[sub 5]-Coated TiO[sub 2] Nanorod Electrodes. Journal of the Electrochemical Society, 2010, 157, A802.	1.3	30
283	Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2525-2530.	8.8	30
284	Simultaneous surface modification method for 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries: Acid treatment and LiCoPO4 coating. Nano Research, 2017, 10, 4210-4220.	5.8	30
285	Sodiumâ€Đecorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie, 2021, 133, 18969-18977.	1.6	30
286	Ion-implantation modification of lithium–phosphorus oxynitride thin-films. Journal of Power Sources, 2002, 109, 214-219.	4.0	29
287	Surface and Interfacial Chemistry in the Nickelâ€Rich Cathode Materials. Batteries and Supercaps, 2020, 3, 309-322.	2.4	29
288	SrIrO3 modified with laminar Sr2IrO4 as a robust bifunctional electrocatalyst for overall water splitting in acidic media. Chemical Engineering Journal, 2021, 419, 129604.	6.6	28

#	Article	IF	CITATIONS
289	Fe _x Ni _y /CeO ₂ loaded on N-doped nanocarbon as an advanced bifunctional electrocatalyst for the overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 470-476.	3.0	27
290	A Metalâ€Free N and P odoped Carbon Nanosphere as Bifunctional Electrocatalyst for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2019, 6, 393-397.	1.7	26
291	Exploring the artificially induced nonstoichiometric effect of Li ₂ RuO ₃ as a reactive promoter on electrocatalytic behavior. Energy and Environmental Science, 2020, 13, 2167-2177.	15.6	26
292	Synthesis and electrochemical properties of Sn87Co13 alloys by NaBH4 and sodium naphthalenide reduction methods. Electrochimica Acta, 2007, 52, 4197-4201.	2.6	25
293	Dependence of Electrochemical Behavior on Concentration and Annealing Temperature of Li[sub x]CoPO[sub 4] Phase-Grown LiNi[sub 0.8]Co[sub 0.16]Al[sub 0.04]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2008, 155, A228.	1.3	25
294	Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries. Journal of Materials Chemistry A, 2014, 2, 15808-15815.	5.2	25
295	A Dry Room-Free High-Energy Density Lithium-ion Batteries Enabled by Impurity Scavenging Separator Membrane. Energy Storage Materials, 2021, 36, 355-364.	9.5	25
296	Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Science China Materials, 2021, 64, 1408-1417.	3.5	25
297	Li0.93[Li0.21Co0.28Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite. Electrochemistry Communications, 2007, 9, 1041-1046.	2.3	23
298	Graphit―undâ€Siliciumâ€Anoden für Lithiumionen―Hochenergiebatterien. Angewandte Chemie, 2020, 132, 112-138.	1.6	23
299	Efficient electrocatalytic conversion of N ₂ to NH ₃ on NiWO ₄ under ambient conditions. Nanoscale, 2020, 12, 1478-1483.	2.8	23
300	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using In‣itu Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 15314-15324.	7.2	22
301	Cu97P3O N /NPC as a bifunctional electrocatalyst for rechargeable zinc-air battery. Journal of Power Sources, 2019, 421, 109-115.	4.0	21
302	3-Chloroanisole for overcharge protection of a Li-ion cell. Electrochimica Acta, 2007, 52, 7404-7408.	2.6	20
303	Building Highâ€Rate Nickelâ€Rich Cathodes by Selfâ€Organization of Structurally Stable Macrovoid. Advanced Science, 2020, 7, 1902844.	5.6	20
304	Elimination of Extraneous Irreversible Capacity in Mesoporous Tin Phosphate Anode by Amorphous Carbon Coating. Electrochemical and Solid-State Letters, 2006, 9, A156.	2.2	19
305	Suppression of structural degradation of LiNi0.9Co0.1O2 cathode at 90°C by AlPO4-nanoparticle coating. Current Applied Physics, 2007, 7, 172-175.	1.1	19
306	Correlation of capacity fading of LiMn2O4 cathode material on 55°C cycling with their surface area measured by a methylene blue adsorption. Solid State Ionics, 2001, 138, 267-271.	1.3	18

#	Article	IF	CITATIONS
307	Enhanced Intrinsic Catalytic Activity of λâ€MnO ₂ by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie, 2016, 128, 8741-8746.	1.6	18
308	Reliable protocols for calculating the specific energy and energy density of Li-Ion batteries. Materials Today Energy, 2021, 21, 100838.	2.5	18
309	Observation of Reversible Pore Change in Mesoporous Tin Phosphate Anode Material during Li Alloying/Dealloying. Journal of the Electrochemical Society, 2006, 153, A1633.	1.3	16
310	Recent progress of analysis techniques for silicon-based anode of lithium-ion batteries. Current Opinion in Electrochemistry, 2017, 6, 77-83.	2.5	16
311	Infrared Spectroscopy of Wide Composition Range xNa2S + (1 - x)B2S3 Glasses. Journal of the American Ceramic Society, 1993, 76, 2753-2759.	1.9	15
312	Electrochemical Properties of GeS2â€Based Glassâ€Polymer Composite Electrolytes for Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1998, 145, 1949-1952.	1.3	15
313	Metalâ€Air Batteries: Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air (Adv. Energy) Tj I	ETQ _q 1 1 0. 10.2	784314 rg8
314	Infrared spectra of lithium thioborate glasses and polycrystals. Journal of Non-Crystalline Solids, 1994, 170, 182-189.	1.5	14
315	Effect of Pore Size and Pore Wall Thickness of Mesoporous Phase in Tin Phosphate Composite on Electrochemical Cycling. Electrochemical and Solid-State Letters, 2005, 8, A452.	2.2	14
316	Control of the carbon shell thickness in Sn70Ge30@carbon core–shell nanoparticles using alkyl terminators: Its implication for high-capacity lithium battery anode materials. Electrochimica Acta, 2008, 54, 461-466.	2.6	14
317	Unraveling the Rapid Redox Behavior of Liâ€Excess 3dâ€Transition Metal Oxides for High Rate Capability. Advanced Energy Materials, 2020, 10, 1904092.	10.2	14
318	IrO ₂ /LiLa ₂ IrO ₆ as a robust electrocatalyst for the oxygen evolution reaction in acidic media. Journal of Materials Chemistry A, 2022, 10, 3393-3399.	5.2	14
319	Nonaqueous arylated quinone catholytes for lithium–organic flow batteries. Journal of Materials Chemistry A, 2018, 6, 14761-14768.	5.2	13
320	Antimonyâ€Based Composites Loaded on Phosphorusâ€Doped Carbon for Boosting Faradaic Efficiency of the Electrochemical Nitrogen Reduction Reaction. Angewandte Chemie, 2019, 131, 13463-13468.	1.6	13
321	In-situ formed N doped bamboo-like carbon nanotube decorated with Fe–Ni–Cr nanoparticles as efficient electrocatalysts for overall water-splitting. Materials Chemistry and Physics, 2020, 241, 122375.	2.0	13
322	Infrared spectroscopy of glasses and polycrystals in the series xK2S + (1-x)B2S3. Journal of Non-Crystalline Solids, 1995, 182, 248-256.	1.5	11
323	Li Reaction Mechanism of MnP Nanoparticles. Journal of the Electrochemical Society, 2012, 159, A669-A672.	1.3	11
324	Lithiumâ€Oxygen Batteries: Stabilization of Li Metal Anode in DMSOâ€Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O ₂ Batteries (Adv. Energy Mater. 14/2017). Advanced Energy Materials, 2017, 7, .	10.2	11

#	Article	IF	CITATIONS
325	Correlation of Low-Index Facets to Active Sites in Micrometer-Sized Polyhedral Pyrochlore Electrocatalyst. ACS Catalysis, 2018, 8, 9647-9655.	5.5	11
326	Phase Transition of Bare and Coated Li[sub x]CoO[sub 2] (x=0.4 and 0.24) at 300°C. Journal of the Electrochemical Society, 2005, 152, A1824.	1.3	10
327	Mn _{<i>x</i>} (PO ₄) _{<i>y</i>} /NPC As a High Performance Bifunctional Electrocatalyst for Oxygen Electrode Reactions. ChemCatChem, 2019, 11, 1222-1227.	1.8	10
328	Density of xNa2S.(1 - x)B2S3(x = 0 to 0.8) Glasses: Correlation with Short-Range Order. Journal of the American Ceramic Society, 1995, 78, 3329-3335.	1.9	9
329	Static 11B NMR studies of the short range order in alkali metal modified B2S3 glasses. Journal of Non-Crystalline Solids, 2000, 270, 205-214.	1.5	9
330	Metal-Ion Chelating Gel Polymer Electrolyte for Ni-Rich Layered Cathode Materials at a High Voltage and an Elevated Temperature. ACS Applied Materials & Interfaces, 2021, 13, 9965-9974.	4.0	9
331	Infrared spectroscopy of glasses and polycrystals in the series xCs2S+(1â^'x)B2S3. Journal of Non-Crystalline Solids, 2002, 298, 176-192.	1.5	8
332	Effect of Anisotropic Volume Change in Tin Phosphate Nanoparticle Anode Material with Mesocellular Foam Structure on Capacity Retention. Electrochemical and Solid-State Letters, 2006, 9, A311.	2.2	8
333	Comparison of Structural Changes in Fully Delithiated Li[sub x][Ni[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]]O[sub 2] and Li[sub x][Ni[sub 0.33]Co[sub 0.33]Mn[sub 0.30]Mg[sub 0.04]]O[sub 1.96]F[sub 0.04] Cathodes (x=0) upon Thermal Annealing. Journal of the Electrochemical Society, 2007, 154, A561.	1.3	8
334	Zincâ€Reduced Mesoporous TiO _{<i>x</i>} Liâ€lon Battery Anodes with Exceptional Rate Capability and Cycling Stability. Chemistry - an Asian Journal, 2016, 11, 3382-3388.	1.7	8
335	Fe-N-C combined with Fe100P O N porous hollow spheres on a phosphoric acid group-rich N-doped carbon as an electrocatalyst for zinc-air battery. Applied Surface Science, 2019, 481, 498-504.	3.1	8
336	Surface and bulk structure investigation of fully delithiated bare and AlPO4-coated LixCoO2 (x=0) cathode materials annealed between 200 and 400°C. Journal of Power Sources, 2007, 174, 895-899.	4.0	7
337	Electrochemical and Structural Characterizations of InSb Nanoparticles Prepared Using a Sodium Naphthalenide Reduction Method. Journal of the Electrochemical Society, 2008, 155, A825.	1.3	7
338	Zinc-Air Batteries: All-Solid-State Cable-Type Flexible Zinc-Air Battery (Adv. Mater. 8/2015). Advanced Materials, 2015, 27, 1395-1395.	11.1	6
339	Highly Efficient CO ₂ Utilization via Aqueous Zinc– or Aluminum–CO ₂ Systems for Hydrogen Gas Evolution and Electricity Production. Angewandte Chemie, 2019, 131, 9606-9611.	1.6	6
340	Evaluation of the Volumetric Activity of the Air Electrode in a Zinc–Air Battery Using a Nitrogen and Sulfur Co-doped Metal-free Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 57064-57070.	4.0	6
341	Weakened lattice-strain effect in MoO _{<i>x</i>} @NPC-supported ruthenium dots toward high-efficiency hydrogen generation. Journal of Materials Chemistry A, 2021, 9, 24348-24354.	5.2	6
342	Development of Highâ€Energy Anodes for Allâ€Solidâ€State Lithium Batteries Based on Sulfide Electrolytes. Angewandte Chemie, 2022, 134, .	1.6	6

#	Article	IF	CITATIONS
343	Highly Densified Fractureâ€Free Siliconâ€Based Electrode for High Energy Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
344	Density measurements of xK2S + (1 - x)B2S3 (0 ⩽ x ⩽ 0.75) glasses: correlation with short range order. Journal of Non-Crystalline Solids, 1995, 190, 244-250.	1.5	5
345	Improvement of 12 V overcharge behavior of LiCoO2 cathode material by LiNi0.8Co0.1Mn0.1O2 addition in a Li-ion cell. Journal of Power Sources, 2006, 153, 345-349.	4.0	5
346	SnO[sub 2] Filled Mesoporous Tin Phosphate. Electrochemical and Solid-State Letters, 2006, 9, A373.	2.2	5
347	Cathode Materials: A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for Highâ€Performance 0.4Li ₂ MnO _{3–} 0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2 Cathode Materials (Adv. Energy Mater. 16/2014). Advanced Energy Materials. 2014. 4.}	10.2 	5
348	Liâ€lon Cells: Surface Engineering Strategies of Layered LiCoO ₂ Cathode Material to Realize Highâ€Energy and Highâ€Voltage Liâ€lon Cells (Adv. Energy Mater. 1/2017). Advanced Energy Materials, 2017, 7,	.10.2	5
349	Using lithium chloride as a medium to prepare N,P-codoped carbon nanosheets for oxygen reduction and evolution reactions. Inorganic Chemistry Frontiers, 2019, 6, 417-422.	3.0	5
350	Density measurements of xRb2S + (1 â^' x)B2S3 (0 ≤ ≤0.75) glasses: correlation with short range order. Journal of Non-Crystalline Solids, 1996, 194, 319-325.	1.5	4
351	Structural changes of bare and AlPO4-coated LixCoO2 (x=0.24 and 0.1) upon thermal annealing ≥200°C. Journal of Power Sources, 2008, 179, 780-784.	4.0	4
352	Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithium-Rich Cathodes with Superior Cycling Stability and Rate Capability. ChemElectroChem, 2017, 4, 3-3.	1.7	4
353	Electrocatalysts: Low Loading of Rh x P and RuP on N, P Codoped Carbon as Two Trifunctional Electrocatalysts for the Oxygen and Hydrogen Electrode Reactions (Adv. Energy Mater. 29/2018). Advanced Energy Materials, 2018, 8, 1870130.	10.2	4
354	Influence of Surface Charges/Chemistry on the Catalysis of Perovskite Complexes. ACS Applied Materials & Interfaces, 2018, 10, 28502-28508.	4.0	4
355	Spinel LiCo _{0.7} Mn _{1.3} O ₄ Nanowire Clusters as Electrode Materials. ChemSusChem, 2010, 3, 1260-1263.	3.6	3
356	Li-Ion Battery Cathodes: Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode (Adv. Mater. 23/2016). Advanced Materials, 2016, 28, 4704-4704.	11.1	3
357	Enhanced Structural Stability of o-LiMnO2 by Solâ^'Gel Coating of Al2O3. , 0, , .		3
358	Lithiumâ€Ion Batteries: Countering Voltage Decay and Capacity Fading of Lithiumâ€Rich Cathode Material at 60 °C by Hybrid Surface Protection Layers (Adv. Energy Mater. 13/2015). Advanced Energy Materials, 2015, 5, .	10.2	2
359	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using Inâ€situ Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2020, 132, 15427-15437.	1.6	2
360	Lithiumâ€Ion Batteries: Cyclic Aminosilaneâ€Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Liâ€Ion Batteries (Adv. Energy Mater. 15/2020). Advanced Energy Materials, 2020, 10, 2070069.	10.2	2

#	Article	IF	CITATIONS
361	Cathode Materials: Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries (Adv. Energy Mater. 16/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	1
362	Metal-Air and Redox Flow Batteries. ChemPlusChem, 2015, 80, 257-258.	1.3	1
363	The Chemistry of Energy Conversion and Storage. Chemistry - an Asian Journal, 2016, 11, 1119-1119.	1.7	1
364	Zinc-Air Batteries: A Ternary Ni46 Co40 Fe14 Nanoalloy-Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc-Air Batteries (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870346.	11.1	1
365	Batteries: Organic-Catholyte-Containing Flexible Rechargeable Lithium Batteries (Adv. Mater. 35/2015). Advanced Materials, 2015, 27, 5094-5094.	11.1	0
366	Zn-Air Batteries: Composites of a Prussian Blue Analogue and Gelatin-Derived Nitrogen-Doped Carbon-Supported Porous Spinel Oxides as Electrocatalysts for a Zn-Air Battery (Adv. Energy Mater.) Tj ETQq0 0	0 r g6⊡ /O	verlock 10 Tf
367	Frontispiz: Oxygen Vacancy Diffusion and Condensation in Lithiumâ€lon Battery Cathode Materials. Angewandte Chemie, 2019, 131, .	1.6	0
368	Frontispiece: Oxygen Vacancy Diffusion and Condensation in Lithiumâ€Ion Battery Cathode Materials. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
369	Taking a Leading Role as a "First Mover―to Advance Materials Science and Technology at the Ulsan National Institute of Science & Technology (UNIST). Advanced Materials, 2019, 31, 1900370.	11.1	0
370	Enhanced Long-Term Cycling Performance of Single Crystalline LiCo0.95Ni0.05O2 cathode Material at High Cut-Off Voltage in Li-Ion Cell. ECS Meeting Abstracts, 2018, , .	0.0	0
371	(Invited) A New Type of Ni-Doped LiCoO2 with Enhanced Structural and Electrochemical Reversibility at High Voltage. ECS Meeting Abstracts, 2018, , .	0.0	0
372	Recent Advances in Low-Cost, Highly Efficient Bi-Functional Oxygen Electrocatalysts for High-Performance Zinc-Air Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
373	Unraveling the Rapid Redox Reactions through Superstructure of Lithium-Excess Layered Oxides. ECS Meeting Abstracts, 2019, , .	0.0	0
374	Robust Design of Silicon/Graphite Composite Via Atomic-Scale Rearrangement for High Performance Lithium Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
375	Structural Distribution of Redox-Active Oxygen Governing Chemical Reversibility in Li- and Mn-Rich Layered Oxides. ECS Meeting Abstracts, 2019, , .	0.0	0
376	Toward Maximized Volumetric Energy Density Using Graphite Via Polymer Coating with High Degree of Electrolyte Impregnation. ECS Meeting Abstracts, 2019, , .	0.0	0
377	A Novel Si/C Composite as a High Capacity Anode Material for Lithium-ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
378	(Invited) Beyond Si and SiO x : SiN x and SiC x Anode Materials for Lithium-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0