Gino I Montecinos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4257680/publications.pdf Version: 2024-02-01

CINO L MONTECINOS

#	Article	IF	CITATIONS
1	Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes. Journal of Computational Physics, 2014, 266, 101-123.	3.8	53
2	Advection-Diffusion-Reaction Equations: Hyperbolization and High-Order ADER Discretizations. SIAM Journal of Scientific Computing, 2014, 36, A2423-A2457.	2.8	47
3	Reformulations for general advection–diffusion–reaction equations and locally implicit ADER schemes. Journal of Computational Physics, 2014, 275, 415-442.	3.8	42
4	Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. Science and Technology of Advanced Materials, 2022, 23, 300-321.	6.1	25
5	Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws. Journal of Computational Physics, 2015, 303, 146-172.	3.8	24
6	Assessment of reducedâ€order unscented Kalman filter for parameter identification in 1â€dimensional blood flow models using experimental data. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2843.	2.1	24
7	An efficient, second order accurate, universal generalized Riemann problem solver based on the HLLI Riemann solver. Journal of Computational Physics, 2018, 375, 1238-1269.	3.8	24
8	Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution – Part I, second-order FVTD schemes. Journal of Computational Physics, 2017, 349, 604-635.	3.8	22
9	Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution – Part II, higher order FVTD schemes. Journal of Computational Physics, 2018, 354, 613-645.	3.8	22
10	Exploring various flux vector splittings for the magnetohydrodynamic system. Journal of Computational Physics, 2016, 311, 1-21.	3.8	17
11	Computational haemodynamics in stenotic internal jugular veins. Journal of Mathematical Biology, 2015, 70, 745-772.	1.9	15
12	Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes. Journal of Computational Physics, 2016, 315, 409-433.	3.8	15
13	A simplified Cauchy-Kowalewskaya procedure for the local implicit solution of generalized Riemann problems of hyperbolic balance laws. Computers and Fluids, 2020, 202, 104490.	2.5	7
14	AENO: a Novel Reconstruction Method in Conjunction with ADER Schemes for Hyperbolic Equations. Communications on Applied Mathematics and Computation, 0, , 1.	1.7	7
15	A cell-centered polynomial basis for efficient Galerkin predictors in the context of ADER finite volume schemes. The one-dimensional case. Computers and Fluids, 2017, 156, 220-238.	2.5	3
16	An iterative scaling function procedure for solving scalar non-linear hyperbolic balance laws. Applied Numerical Mathematics, 2021, 162, 35-52.	2.1	2
17	An Optimized CPML Formulation for High Order FVTD Schemes for CED. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2021, 6, 183-200.	2.2	2
18	A universal centred high-order method based on implicit Taylor series expansion with fast second order evolution of spatial derivatives. Journal of Computational Physics, 2021, 443, 110535.	3.8	1

#	Article	IF	CITATIONS
19	Solver for the Generalized Riemann Problem for Balance Laws with Stiff Source Terms: The Scalar Case. Series in Contemporary Applied Mathematics, 2012, , 576-583.	0.8	0
20	A strategy to implement Dirichlet boundary conditions in the context of ADER finite volume schemes. One-dimensional conservation laws. Computers and Fluids, 2016, 140, 357-370.	2.5	0