
Fabio Zuccotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4257650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Proteasome-Targeting Arylsulfonamide with Potential for the Treatment of Chagas' Disease. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0153521.	3.2	11
2	Repositioning of a Diaminothiazole Series Confirmed to Target the Cyclin-Dependent Kinase CRK12 for Use in the Treatment of African Animal Trypanosomiasis. Journal of Medicinal Chemistry, 2022, 65, 5606-5624.	6.4	8
3	Optimization of TAM16, a Benzofuran That Inhibits the Thioesterase Activity of Pks13; Evaluation toward a Preclinical Candidate for a Novel Antituberculosis Clinical Target. Journal of Medicinal Chemistry, 2022, 65, 409-423.	6.4	15
4	Scaffold-Hopping Strategy on a Series of Proteasome Inhibitors Led to a Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 5905-5930.	6.4	25
5	Multiple unbiased approaches identify oxidosqualene cyclase as the molecular target of a promising anti-leishmanial. Cell Chemical Biology, 2021, 28, 711-721.e8.	5.2	11
6	Ligand binding: evaluating the contribution of the water molecules network using the Fragment Molecular Orbital method. Journal of Computer-Aided Molecular Design, 2021, 35, 1025-1036.	2.9	8
7	Spirocycle MmpL3 Inhibitors with Improved hERG and Cytotoxicity Profiles as Inhibitors of <i>Mycobacterium tuberculosis</i> Growth. ACS Omega, 2021, 6, 2284-2311.	3.5	19
8	DNDI-6148: A Novel Benzoxaborole Preclinical Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2021, 64, 16159-16176.	6.4	31
9	A platform for target prediction of phenotypic screening hit molecules. Journal of Molecular Graphics and Modelling, 2020, 95, 107485.	2.4	1
10	Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2020, 14, e0008458.	3.0	9
11	The Q _i Site of Cytochrome <i>b</i> is a Promiscuous Drug Target in <i>Trypanosoma cruzi</i> and <i>Leishmania donovani</i> . ACS Infectious Diseases, 2020, 6, 515-528.	3.8	23
12	Abstract 4206: EUD-GK-001 is a novel kinase inhibitor within vitroanti-lymphoma activity. , 2020, , .		0
13	Identification of inhibitors of an unconventional Trypanosoma brucei kinetochore kinase. PLoS ONE, 2019, 14, e0217828.	2.5	6
14	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
15	Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9318-9323.	7.1	119
16	Pharmacological Validation of <i>N</i> -Myristoyltransferase as a Drug Target in <i>Leishmania donovani</i> . ACS Infectious Diseases, 2019, 5, 111-122.	3.8	55
17	Screening of a Novel Fragment Library with Functional Complexity against <i>Mycobacterium tuberculosis</i> InhA. ChemMedChem, 2018, 13, 672-677.	3.2	10
18	Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9616-9621.	7.1	90

FABIO ZUCCOTTO

#	Article	IF	CITATIONS
19	Onâ€Chip Screening of a Glycomimetic Library with Câ€Type Lectins Reveals Structural Features Responsible for Preferential Binding of Dectinâ€2 over DCâ€SIGN/R and Langerin. Chemistry - A European Journal, 2018, 24, 14448-14460.	3.3	16
20	Identification of Morpholino Thiophenes as Novel <i>Mycobacterium tuberculosis</i> Inhibitors, Targeting QcrB. Journal of Medicinal Chemistry, 2018, 61, 6592-6608.	6.4	43
21	Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature, 2018, 560, 192-197.	27.8	112
22	Pharmacokinetics of β-Lactam Antibiotics: Clues from the Past To Help Discover Long-Acting Oral Drugs in the Future. ACS Infectious Diseases, 2018, 4, 1439-1447.	3.8	26
23	Exhaustive sampling of the fragment space associated to a molecule leading to the generation of conserved fragments. Chemical Biology and Drug Design, 2018, 91, 655-667.	3.2	7
24	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	3.8	77
25	Prediction of Drug Penetration in Tuberculosis Lesions. ACS Infectious Diseases, 2016, 2, 552-563.	3.8	110
26	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	27.8	353
27	Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1 <i>H</i> -isoindole-4-carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy. Journal of Medicinal Chemistry, 2015, 58, 6875-6898.	6.4	93
28	Fragment-based hit discovery and structure-based optimization of aminotriazoloquinazolines as novel Hsp90 inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 4135-4150.	3.0	34
29	Discovery of NMS-E973 as novel, selective and potent inhibitor of heat shock protein 90 (Hsp90). Bioorganic and Medicinal Chemistry, 2013, 21, 7047-7063.	3.0	23
30	NMS-E973, a Novel Synthetic Inhibitor of Hsp90 with Activity against Multiple Models of Drug Resistance to Targeted Agents, Including Intracranial Metastases. Clinical Cancer Research, 2013, 19, 3520-3532.	7.0	29
31	Structure-based optimization of potent PDK1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4095-4099.	2.2	20
32	Through the "Catekeeper Door― Exploiting the Active Kinase Conformation. Journal of Medicinal Chemistry, 2010, 53, 2681-2694.	6.4	432
33	Abstract 2522: Identification and characterization of new highly selective and potent BRAF inhibitors. , 2010, , .		0
34	Abstract 691:In vitroandin vivocharacterization of selective orally available Parp-1 inhibitors with demonstrated antitumor efficacy in BRCA negative cancer models. , 2010, , .		0
35	Abstract A213: Potent anticancer activityin vitroandin vivoby NMSâ€E973, a novel synthetic inhibitor of HSP90. , 2009, , .		0
36	Pharmacophore Features Distributions in Different Classes of Compounds ChemInform, 2003, 34, no.	0.0	0

FABIO ZUCCOTTO

#	Article	IF	CITATIONS
37	2,4-Diaminopyrimidines as inhibitors of Leishmanial and Trypanosomal dihydrofolate reductase. Bioorganic and Medicinal Chemistry, 2003, 11, 4693-4711.	3.0	53
38	Pharmacophore Features Distributions in Different Classes of Compounds. Journal of Chemical Information and Computer Sciences, 2003, 43, 1542-1552.	2.8	24
39	Novel inhibitors of Trypanosoma cruzi dihydrofolate reductase. European Journal of Medicinal Chemistry, 2001, 36, 395-405.	5.5	69
40	DNA-binding mechanism of the Escherichia coli Ada O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Research, 2000, 28, 3710-3718.	14.5	15
41	The structure-based design and synthesis of selective inhibitors of trypanosoma cruzi dihydrofolate reductase. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1463-1468.	2.2	32
42	Design and Synthesis of Lipophilic Phosphoramidate d4T-MP Prodrugs Expressing High Potency Against HIV in Cell Culture:  Structural Determinants for in Vitro Activity and QSAR. Journal of Medicinal Chemistry, 1999, 42, 4122-4128.	6.4	61
43	Sugar Mimics:Â An Artificial Receptor for Cholera Toxin. Journal of the American Chemical Society, 1999, 121, 2032-2036.	13.7	52
44	Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania. Journal of Computer-Aided Molecular Design, 1998, 12, 241-257.	2.9	55
45	Simulation of Proteinâ^'Sugar Interactions:  A Computational Model of the Complex between Ganglioside GM1 and the Heat-Labile Enterotoxin of Escherichia coli. Journal of Medicinal Chemistry, 1997, 40, 1855-1862.	6.4	23