Peter Strasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4255619/publications.pdf Version: 2024-02-01

		701	1190
388	55,724	121	228
papers	citations	h-index	g-index
412	412	412	31097
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010, 2, 454-460.	13.6	2,489
2	Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2012, 2, 1765-1772.	11.2	2,019
3	The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem, 2010, 2, 724-761.	3.7	1,493
4	Particle Size Effects in the Catalytic Electroreduction of CO ₂ on Cu Nanoparticles. Journal of the American Chemical Society, 2014, 136, 6978-6986.	13.7	1,145
5	Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Materials, 2013, 12, 765-771.	27.5	1,121
6	Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nature Communications, 2016, 7, 12123.	12.8	896
7	Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8, 944.	12.8	890
8	Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts. Journal of the American Chemical Society, 2016, 138, 5603-5614.	13.7	888
9	Electrocatalytic Oxygen Evolution Reaction in Acidic Environments – Reaction Mechanisms and Catalysts. Advanced Energy Materials, 2017, 7, 1601275.	19.5	847
10	NiFeâ€Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Nonâ€Acidic Electrolytes. Advanced Energy Materials, 2016, 6, 1600621.	19.5	765
11	Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nature Catalysis, 2019, 2, 304-313.	34.4	757
12	Electrocatalysis on Bimetallic Surfaces:  Modifying Catalytic Reactivity for Oxygen Reduction by Voltammetric Surface Dealloying. Journal of the American Chemical Society, 2007, 129, 12624-12625.	13.7	742
13	Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nature Communications, 2015, 6, 8625.	12.8	694
14	Nanostructured electrocatalysts with tunable activity and selectivity. Nature Reviews Materials, 2016, 1, .	48.7	675
15	Mesoporous Nitrogen-Doped Carbon for the Electrocatalytic Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2012, 134, 4072-4075.	13.7	609
16	Exceptional Size-Dependent Activity Enhancement in the Electroreduction of CO ₂ over Au Nanoparticles. Journal of the American Chemical Society, 2014, 136, 16473-16476.	13.7	600
17	In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nature Communications, 2020, 11, 2522.	12.8	594
18	Electrolysis of low-grade and saline surface water. Nature Energy, 2020, 5, 367-377.	39.5	579

Peter Strasser

#	Article	IF	CITATIONS
19	Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Letters, 2019, 4, 933-942.	17.4	578
20	Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. Journal of the American Chemical Society, 2014, 136, 17530-17536.	13.7	575
21	The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. Angewandte Chemie - International Edition, 2017, 56, 5994-6021.	13.8	573
22	Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER). Journal of the American Chemical Society, 2015, 137, 13031-13040.	13.7	565
23	A Highly Ordered Meso@Microporous Carbon-Supported Sulfur@Smaller Sulfur Core–Shell Structured Cathode for Li–S Batteries. ACS Nano, 2014, 8, 9295-9303.	14.6	552
24	Electrochemical CO ₂ Reduction: A Classification Problem. ChemPhysChem, 2017, 18, 3266-3273.	2.1	534
25	Octahedral PtNi Nanoparticle Catalysts: Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition. Nano Letters, 2012, 12, 5885-5889.	9.1	522
26	Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH. Journal of the American Chemical Society, 2017, 139, 2070-2082.	13.7	518
27	Metalâ€Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO ₂ Electroreduction to CO and Hydrocarbons. Angewandte Chemie - International Edition, 2015, 54, 10758-10762.	13.8	504
28	Activity–Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal–Nitrogen–Carbon Catalysts. Journal of the American Chemical Society, 2019, 141, 12372-12381.	13.7	493
29	Design Criteria, Operating Conditions, and Nickel–Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis. ChemSusChem, 2016, 9, 962-972.	6.8	467
30	Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nature Communications, 2015, 6, 8618.	12.8	461
31	Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO _{<i>x</i>} Nanoparticle Catalysts during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 12552-12563.	13.7	451
32	Carbon as catalyst and support for electrochemical energy conversion. Carbon, 2014, 75, 5-42.	10.3	443
33	Dealloyed Ptâ^'Cu Coreâ^'Shell Nanoparticle Electrocatalysts for Use in PEM Fuel Cell Cathodes. Journal of Physical Chemistry C, 2008, 112, 2770-2778.	3.1	432
34	A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nature Catalysis, 2018, 1, 841-851.	34.4	424
35	Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catalysis Today, 2016, 260, 8-13.	4.4	417
36	Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nature Catalysis, 2018, 1, 711-719.	34.4	415

#	Article	IF	CITATIONS
37	Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature, 2020, 587, 408-413.	27.8	405
38	Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nature Materials, 2020, 19, 77-85.	27.5	400
39	Oxideâ€Supported IrNiO _{<i>x</i>} Core–Shell Particles as Efficient, Costâ€Effective, and Stable Catalysts for Electrochemical Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 2975-2979.	13.8	384
40	Efficient Electrochemical Hydrogen Peroxide Production from Molecular Oxygen on Nitrogen-Doped Mesoporous Carbon Catalysts. ACS Catalysis, 2018, 8, 2844-2856.	11.2	372
41	Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nature Materials, 2017, 16, 1142-1148.	27.5	366
42	Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy and Environmental Science, 2015, 8, 258-266.	30.8	358
43	Efficient CO ₂ to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy and Environmental Science, 2019, 12, 640-647.	30.8	357
44	Dealloyed binary PtM3 (M=Cu, Co, Ni) and ternary PtNi3M (M=Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2011, 196, 666-673.	7.8	352
45	Core–Shell Compositional Fine Structures of Dealloyed Pt _{<i>x</i>} Ni _{1–<i>x</i>} Nanoparticles and Their Impact on Oxygen Reduction Catalysis. Nano Letters, 2012, 12, 5423-5430.	9.1	352
46	Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes. Journal of Physical Chemistry Letters, 2013, 4, 3273-3291.	4.6	346
47	Tuning the Catalytic Activity and Selectivity of Cu for CO ₂ Electroreduction in the Presence of Halides. ACS Catalysis, 2016, 6, 2136-2144.	11.2	344
48	Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nature Materials, 2018, 17, 827-833.	27.5	344
49	Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt–Cu–Co Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 8988-8991.	13.8	343
50	Size-Dependent Morphology of Dealloyed Bimetallic Catalysts: Linking the Nano to the Macro Scale. Journal of the American Chemical Society, 2012, 134, 514-524.	13.7	340
51	Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chemical Science, 2015, 6, 3321-3328.	7.4	332
52	The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy and Environmental Science, 2018, 11, 3176-3182.	30.8	332
53	A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. Journal of Power Sources, 2014, 250, 196-203.	7.8	312
54	A comparative perspective of electrochemical and photochemical approaches for catalytic H ₂ O ₂ production. Chemical Society Reviews, 2020, 49, 6605-6631.	38.1	308

Peter Strasser

#	Article	IF	CITATIONS
55	Noble Metal-Free Hydrazine Fuel Cell Catalysts: EPOC Effect in Competing Chemical and Electrochemical Reaction Pathways. Journal of the American Chemical Society, 2011, 133, 5425-5431.	13.7	294
56	N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Applied Catalysis B: Environmental, 2019, 241, 442-451.	20.2	284
57	Electrochemical Reduction of CO ₂ on Metal-Nitrogen-Doped Carbon Catalysts. ACS Catalysis, 2019, 9, 7270-7284.	11.2	282
58	IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chemical Science, 2014, 5, 2955-2963.	7.4	278
59	P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 2020, 19, 1215-1223.	27.5	278
60	Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science, 2014, 346, 1502-1506.	12.6	277
61	Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nature Nanotechnology, 2019, 14, 1063-1070.	31.5	267
62	Understanding and Controlling Nanoporosity Formation for Improving the Stability of Bimetallic Fuel Cell Catalysts. Nano Letters, 2013, 13, 1131-1138.	9.1	261
63	Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO ₂ RR). Advanced Materials, 2019, 31, e1805617.	21.0	255
64	High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity. ACS Catalysis, 2015, 5, 2017-2027.	11.2	249
65	Electrochemical water splitting by layered and 3D cross-linked manganese oxides: correlating structural motifs and catalytic activity. Energy and Environmental Science, 2013, 6, 2745.	30.8	248
66	High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 311-323.	34.4	248
67	Rh-Doped Pt–Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. Nano Letters, 2016, 16, 1719-1725.	9.1	238
68	Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catalysis Today, 2012, 195, 144-154.	4.4	236
69	Cobalt–Manganeseâ€Based Spinels as Multifunctional Materials that Unify Catalytic Water Oxidation and Oxygen Reduction Reactions. ChemSusChem, 2015, 8, 164-171.	6.8	233
70	High Throughput Experimental and Theoretical Predictive Screening of Materials â^' A Comparative Study of Search Strategies for New Fuel Cell Anode Catalysts. Journal of Physical Chemistry B, 2003, 107, 11013-11021.	2.6	231
71	Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochemistry Communications, 2014, 48, 81-85.	4.7	229
72	Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. Journal of Power Sources, 2011, 196, 5240-5249.	7.8	227

#	Article	IF	CITATIONS
73	Recent Advances in Nonâ€Noble Bifunctional Oxygen Electrocatalysts toward Largeâ€Scale Production. Advanced Functional Materials, 2020, 30, 2000503.	14.9	226
74	Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 9889.	10.3	223
75	An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy and Environmental Science, 2016, 9, 2020-2024.	30.8	221
76	Noble-Metal-Free Electrocatalysts with Enhanced ORR Performance by Task-Specific Functionalization of Carbon using Ionic Liquid Precursor Systems. Journal of the American Chemical Society, 2014, 136, 14486-14497.	13.7	219
77	Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). Journal of Power Sources, 2009, 186, 261-267.	7.8	216
78	In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catalysis, 2019, 9, 1283-1288.	11.2	216
79	PtCu ₃ , PtCu and Pt ₃ Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media. Journal of the Electrochemical Society, 2012, 159, B444-B454.	2.9	215
80	Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy and Environmental Science, 2020, 13, 1725-1729.	30.8	215
81	Hierarchically Structured Nanomaterials for Electrochemical Energy Conversion. Angewandte Chemie - International Edition, 2016, 55, 122-148.	13.8	207
82	Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy and Environmental Science, 2020, 13, 2480-2500.	30.8	205
83	Electrocatalytic Oxygen Evolution on Iridium Oxide: Uncovering Catalyst-Substrate Interactions and Active Iridium Oxide Species. Journal of the Electrochemical Society, 2014, 161, F876-F882.	2.9	199
84	Comparative Study of the Electrocatalytically Active Surface Areas (ECSAs) of Pt Alloy Nanoparticles Evaluated by Hupd and CO-stripping voltammetry. Electrocatalysis, 2014, 5, 408-418.	3.0	194
85	Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. Physical Chemistry Chemical Physics, 2008, 10, 3670.	2.8	192
86	Structure-Activity-Stability Relationships of Ptâ^'Co Alloy Electrocatalysts in Gas-Diffusion Electrode Layers. Journal of Physical Chemistry C, 2007, 111, 3744-3752.	3.1	188
87	Direct Electrolytic Splitting of Seawater: Activity, Selectivity, Degradation, and Recovery Studied from the Molecular Catalyst Structure to the Electrolyzer Cell Level. Advanced Energy Materials, 2018, 8, 1800338.	19.5	185
88	Mechanistic classification of electrochemical oscillators — an operational experimental strategy. Journal of Electroanalytical Chemistry, 1999, 478, 50-66.	3.8	176
89	Structure of Dealloyed PtCu3Thin Films and Catalytic Activity for Oxygen Reduction. Chemistry of Materials, 2010, 22, 4712-4720.	6.7	173
90	Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water. Journal of Materials Chemistry A, 2016, 4, 10014-10022.	10.3	171

#	Article	IF	CITATIONS
91	Electrochemical CO ₂ Reduction: Classifying Cu Facets. ACS Catalysis, 2019, 9, 7894-7899.	11.2	170
92	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie - International Edition, 2021, 60, 14446-14457.	13.8	170
93	Controlling Catalytic Selectivities during CO ₂ Electroreduction on Thin Cu Metal Overlayers. Journal of Physical Chemistry Letters, 2013, 4, 2410-2413.	4.6	168
94	pH Effects on the Selectivity of the Electrocatalytic CO ₂ Reduction on Graphene-Embedded Fe–N–C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis. ACS Energy Letters, 2018, 3, 812-817.	17.4	168
95	Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nature Communications, 2021, 12, 794.	12.8	168
96	Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochimica Acta, 2007, 52, 2765-2774.	5.2	159
97	Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts. Physical Chemistry Chemical Physics, 2010, 12, 15251.	2.8	158
98	Tantalum Nitride Nanorod Arrays: Introducing Ni–Fe Layered Double Hydroxides as a Cocatalyst Strongly Stabilizing Photoanodes in Water Splitting. Chemistry of Materials, 2015, 27, 2360-2366.	6.7	158
99	Bifunctional anode catalysts for direct methanol fuel cells. Energy and Environmental Science, 2012, 5, 8335.	30.8	157
100	Molecular Nitrogen–Carbon Catalysts, Solid Metal Organic Framework Catalysts, and Solid Metal/Nitrogenâ€Đoped Carbon (MNC) Catalysts for the Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2018, 8, 1703614.	19.5	157
101	Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt–Ni–Co Alloy Nanocatalysts. Nano Letters, 2015, 15, 7473-7480.	9.1	156
102	Mesoporous IrO ₂ Films Templated by PEO-PB-PEO Block-Copolymers: Self-Assembly, Crystallization Behavior, and Electrocatalytic Performance. Chemistry of Materials, 2011, 23, 3201-3209.	6.7	154
103	Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nature Catalysis, 2021, 4, 1024-1031.	34.4	154
104	Oxygen Electroreduction on PtCo ₃ , PtCo and Pt ₃ Co Alloy Nanoparticles for Alkaline and Acidic PEM Fuel Cells. Journal of the Electrochemical Society, 2012, 159, B394-B405.	2.9	148
105	Structure, Activity, and Faradaic Efficiency of Nitrogenâ€Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. ChemSusChem, 2018, 11, 3388-3395.	6.8	148
106	Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic Media. Electrochemical and Solid-State Letters, 2010, 13, B36.	2.2	147
107	Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using <i>in situ</i> electrochemical liquid cell STEM. Energy and Environmental Science, 2019, 12, 2476-2485.	30.8	146
108	Tuning the Electrocatalytic Oxygen Reduction Reaction Activity and Stability of Shape-Controlled Pt–Ni Nanoparticles by Thermal Annealing â^' Elucidating the Surface Atomic Structural and Compositional Changes. Journal of the American Chemical Society, 2017, 139, 16536-16547.	13.7	144

#	Article	IF	CITATIONS
109	Dealloyed Pt-based core-shell oxygen reduction electrocatalysts. Nano Energy, 2016, 29, 166-177.	16.0	143
110	Nanostructured Manganese Oxide Supported on Carbon Nanotubes for Electrocatalytic Water Splitting. ChemCatChem, 2012, 4, 851-862.	3.7	141
111	Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)–Oxygen Evolution (OER) Cycle Using Core–Shell Nanoelectrocatalysts. Accounts of Chemical Research, 2016, 49, 2658-2668.	15.6	140
112	Nitrogen- and Phosphorus-Doped Biocarbon with Enhanced Electrocatalytic Activity for Oxygen Reduction. ACS Catalysis, 2015, 5, 920-927.	11.2	139
113	Unraveling Mechanistic Reaction Pathways of the Electrochemical CO ₂ Reduction on Fe–N–C Single-Site Catalysts. ACS Energy Letters, 2019, 4, 1663-1671.	17.4	138
114	Electrocatalytic CO ₂ Reduction on CuO _{<i>x</i>} Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity using Operando Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 17974-17983.	13.8	138
115	Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER). ACS Catalysis, 2019, 9, 6653-6663.	11.2	136
116	Electrochemical processes on solid shaped nanoparticles with defined facets. Chemical Society Reviews, 2018, 47, 715-735.	38.1	129
117	Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. I. Experimental. Journal of Chemical Physics, 1997, 107, 979-990.	3.0	128
118	The chemical identity, state and structure of catalytically active centers during the electrochemical CO ₂ reduction on porous Fe–nitrogen–carbon (Fe–N–C) materials. Chemical Science, 2018, 9, 5064-5073.	7.4	128
119	Preparation of Mesoporous Sbâ€, Fâ€, and Inâ€Doped SnO ₂ Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells. Advanced Functional Materials, 2015, 25, 1074-1081.	14.9	127
120	Long-Range Segregation Phenomena in Shape-Selected Bimetallic Nanoparticles: Chemical State Effects. ACS Nano, 2013, 7, 9195-9204.	14.6	126
121	Deconvolution of Utilization, Site Density, and Turnover Frequency of Fe–Nitrogen–Carbon Oxygen Reduction Reaction Catalysts Prepared with Secondary N-Precursors. ACS Catalysis, 2018, 8, 1640-1647.	11.2	126
122	Tuning Catalytic Selectivity at the Mesoscale via Interparticle Interactions. ACS Catalysis, 2016, 6, 1075-1080.	11.2	123
123	The Role of the Copper Oxidation State in the Electrocatalytic Reduction of CO ₂ into Valuable Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1485-1492.	6.7	121
124	Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nature Communications, 2021, 12, 5984.	12.8	120
125	In Situ Observation of Bimetallic Alloy Nanoparticle Formation and Growth Using High-Temperature XRD. Chemistry of Materials, 2011, 23, 2159-2165.	6.7	118
126	Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catalysis Today, 2017, 288, 74-78.	4.4	116

#	Article	IF	CITATIONS
127	MnCo ₂ O ₄ Anchored on P-Doped Hierarchical Porous Carbon as an Electrocatalyst for High-Performance Rechargeable Li–O ₂ Batteries. ACS Catalysis, 2015, 5, 4890-4896.	11.2	115
128	Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. II. Model calculations. Journal of Chemical Physics, 1997, 107, 991-1003.	3.0	114
129	Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structureâ€Activity Relationships. ChemSusChem, 2015, 8, 1908-1915.	6.8	112
130	Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Current Opinion in Electrochemistry, 2019, 18, 61-71.	4.8	111
131	Stability of Dealloyed Porous Pt/Ni Nanoparticles. ACS Catalysis, 2015, 5, 5000-5007.	11.2	110
132	Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Applied Catalysis B: Environmental, 2020, 272, 118967.	20.2	110
133	Core–Shell and Nanoporous Particle Architectures and Their Effect on the Activity and Stability of Pt ORR Electrocatalysts. Topics in Catalysis, 2014, 57, 236-244.	2.8	107
134	Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. Journal of Energy Chemistry, 2016, 25, 251-257.	12.9	107
135	Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers. ACS Applied Energy Materials, 2020, 3, 8276-8284.	5.1	106
136	Formation and Analysis of Core–Shell Fine Structures in Pt Bimetallic Nanoparticle Fuel Cell Electrocatalysts. Journal of Physical Chemistry C, 2012, 116, 19073-19083.	3.1	105
137	Ethanol Electro-Oxidation on Ternary Platinum–Rhodium–Tin Nanocatalysts: Insights in the Atomic 3D Structure of the Active Catalytic Phase. ACS Catalysis, 2014, 4, 1859-1867.	11.2	102
138	Size-Controlled Synthesis of Colloidal Silver Nanoparticles Based on Mechanistic Understanding. Chemistry of Materials, 2013, 25, 4679-4689.	6.7	101
139	Electrochemical Approaches toward CO ₂ Capture and Concentration. ACS Catalysis, 2020, 10, 13058-13074.	11.2	100
140	Sizeâ€Controlled Synthesis of Subâ€10 nm PtNi ₃ Alloy Nanoparticles and their Unusual Volcanoâ€Shaped Size Effect on ORR Electrocatalysis. Small, 2016, 12, 3189-3196.	10.0	99
141	<i>In Situ</i> > Study of Atomic Structure Transformations of Pt–Ni Nanoparticle Catalysts during Electrochemical Potential Cycling. ACS Nano, 2013, 7, 5666-5674.	14.6	98
142	Catalysts by Platonic design. Science, 2015, 349, 379-380.	12.6	98
143	On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti–Ru–Ir mixed metal oxide electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 13741-13747.	2.8	97
144	Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells. Johnson Matthey Technology Review, 2018, 62, 231-255.	1.0	97

#	Article	IF	CITATIONS
145	Dealloyed Core-Shell Fuel Cell Electrocatalysts. Reviews in Chemical Engineering, 2009, 25, .	4.4	96
146	Competitive CO and CO2 methanation over supported noble metal catalysts in high throughput scanning mass spectrometer. Applied Catalysis A: General, 2005, 296, 30-48.	4.3	95
147	Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst. Nano Letters, 2019, 19, 6876-6885.	9.1	95
148	Activity, Structure and Degradation of Dealloyed PtNi3Nanoparticle Electrocatalyst for the Oxygen Reduction Reaction in PEMFC. Journal of the Electrochemical Society, 2011, 159, B24-B33.	2.9	94
149	A comparison of rotating disc electrode, floating electrode technique and membrane electrode assembly measurements for catalyst testing. Journal of Power Sources, 2018, 392, 274-284.	7.8	94
150	Effects of Composition and Annealing Conditions on Catalytic Activities of Dealloyed Pt–Cu Nanoparticle Electrocatalysts for PEMFC. Journal of the Electrochemical Society, 2008, 155, B1281.	2.9	92
151	Combinatorial Study of High-Surface-Area Binary and Ternary Electrocatalysts for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2009, 156, B363.	2.9	92
152	Nitrogen-doped coatings on carbon nanotubes and their stabilizing effect on Pt nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 6444.	2.8	92
153	Carbon Monoxide-Assisted Size Confinement of Bimetallic Alloy Nanoparticles. Journal of the American Chemical Society, 2014, 136, 4813-4816.	13.7	91
154	Activity of ordered and disordered Pt-Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases. Journal of Power Sources, 2007, 172, 50-56.	7.8	88
155	Dimensionally Stable Ru/Ir/TiO ₂ -Anodes with Tailored Mesoporosity for Efficient Electrochemical Chlorine Evolution. ACS Catalysis, 2013, 3, 1324-1333.	11.2	88
156	Shape-selected bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. Faraday Discussions, 2013, 162, 91.	3.2	86
157	Dynamical changes of a Ni-Fe oxide water splitting catalyst investigated at different pH. Catalysis Today, 2016, 262, 65-73.	4.4	86
158	Combinatorial discovery of Ni-based binary and ternary catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells. Journal of Power Sources, 2014, 247, 605-611.	7.8	85
159	Synthesis and electrocatalytic activity of phosphorus-doped carbon xerogel for oxygen reduction. Electrochimica Acta, 2014, 127, 53-60.	5.2	84
160	Electroless synthesis of nanostructured nickel and nickel–boron tubes and their performance as unsupported ethanol electrooxidation catalysts. Journal of Power Sources, 2013, 222, 243-252.	7.8	82
161	The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 6533-6538.	13.8	81
162	Synthesis of Pt3Co Alloy Nanocatalyst via Reverse Micelle for Oxygen Reduction Reaction in PEMFCs. Topics in Catalysis, 2008, 49, 241-250.	2.8	79

#	Article	IF	CITATIONS
163	Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal–Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption. ACS Catalysis, 2019, 9, 4841-4852.	11.2	79
164	Thermal Facet Healing of Concave Octahedral Pt–Ni Nanoparticles Imaged in Situ at the Atomic Scale: Implications for the Rational Synthesis of Durable High-Performance ORR Electrocatalysts. ACS Catalysis, 2016, 6, 692-695.	11.2	78
165	High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nature Communications, 2021, 12, 4271.	12.8	75
166	Synthesis, Dealloying, and ORR Electrocatalysis of PDDA-Stabilized Cu-Rich Pt Alloy Nanoparticles. Journal of the Electrochemical Society, 2007, 154, B1192.	2.9	74
167	Impact of Carbon Support Functionalization on the Electrochemical Stability of Pt Fuel Cell Catalysts. Chemistry of Materials, 2018, 30, 7287-7295.	6.7	73
168	Highly selective and scalable CO2 to CO - Electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy, 2020, 76, 105030.	16.0	73
169	Electrocatalysis Using Porous Nanostructured Materials. ChemPhysChem, 2012, 13, 1385-1394.	2.1	72
170	Synergized Multimetal Oxides with Amorphous/Crystalline Heterostructure as Efficient Electrocatalysts for Lithium–Oxygen Batteries. Advanced Energy Materials, 2021, 11, 2100110.	19.5	72
171	Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discussions, 2008, 140, 283-296.	3.2	71
172	Stabilitäanforderungen von Elektrokatalysatoren für die Sauerstoffentwicklung: der Weg zu einem grundlegenden VerstA¤dnis und zur Minimierung der Katalysatordegradation. Angewandte Chemie, 2017, 129, 6088-6117.	2.0	70
173	From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO ₂ to formic acid. Journal of Materials Chemistry A, 2015, 3, 3901-3907.	10.3	69
174	Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catalysis Today, 2017, 288, 30-36.	4.4	68
175	Evidence of Marsâ€Vanâ€Krevelen Mechanism in the Electrochemical Oxygen Evolution on Niâ€Based Catalysts. Angewandte Chemie - International Edition, 2021, 60, 14981-14988.	13.8	67
176	Catalyst Particle Density Controls Hydrocarbon Product Selectivity in CO ₂ Electroreduction on CuO _{<i>x</i>} . ChemSusChem, 2017, 10, 4642-4649.	6.8	66
177	Dealloyed PtNi-Core–Shell Nanocatalysts Enable Significant Lowering of Pt Electrode Content in Direct Methanol Fuel Cells. ACS Catalysis, 2019, 9, 3764-3772.	11.2	66
178	Dealloying of Cu ₃ Pt (111) Studied by Surface X-ray Scattering. Journal of Physical Chemistry C, 2011, 115, 9074-9080.	3.1	65
179	Oscillating Langmuirâ^'Hinshelwood Mechanisms. The Journal of Physical Chemistry, 1996, 100, 19118-19123.	2.9	64
180	Water electrolysis: Direct from the sea or not to be?. Joule, 2021, 5, 1921-1923.	24.0	63

#	Article	IF	CITATIONS
181	Combinatorial Optimization of Ternary Pt Alloy Catalysts for the Electrooxidation of Methanol. ACS Combinatorial Science, 2008, 10, 216-224.	3.3	62
182	Unravelling Degradation Pathways of Oxide‣upported Pt Fuel Cell Nanocatalysts under In Situ Operating Conditions. Advanced Energy Materials, 2018, 8, 1701663.	19.5	62
183	Shape Stability of Octahedral PtNi Nanocatalysts for Electrochemical Oxygen Reduction Reaction Studied by <i>in situ</i> Transmission Electron Microscopy. ACS Nano, 2018, 12, 5306-5311.	14.6	62
184	Activity, Stability, and Degradation Mechanisms of Dealloyed PtCu ₃ and PtCo ₃ Nanoparticle Fuel Cell Catalysts. ChemCatChem, 2011, 3, 1805-1813.	3.7	61
185	Remote Triggering of Waves in an Electrochemical System. Science, 1999, 284, 291-293.	12.6	59
186	Exceptional Activity of a Pt–Rh–Ni Ternary Nanostructured Catalyst for the Electrochemical Oxidation of Ethanol. ChemElectroChem, 2015, 2, 903-908.	3.4	59
187	On the origin of oscillations in the electrocatalytic oxidation of HCOOH on a Pt electrode modified by Bi deposition. Electrochimica Acta, 2001, 47, 501-508.	5.2	58
188	Formation of unexpectedly active Ni–Fe oxygen evolution electrocatalysts by physically mixing Ni and Fe oxyhydroxides. Chemical Communications, 2019, 55, 818-821.	4.1	57
189	The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO ₂ . Energy and Environmental Science, 2021, 14, 5995-6006.	30.8	57
190	Identification and characterization of adsorbed serum sialoglycans on Leishmania donovani promastigotes. Glycobiology, 2003, 13, 351-361.	2.5	56
191	Mesoporous Nitrogen Doped Carbon Supported Platinum PEM Fuel Cell Electrocatalyst Made From Ionic Liquids. ChemCatChem, 2012, 4, 479-483.	3.7	56
192	Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. Chemical Communications, 2015, 51, 17285-17288.	4.1	56
193	The impact of the morphology of the carbon support on the activity and stability of nanoparticle fuel cell catalysts. Catalysis Science and Technology, 2016, 6, 8276-8288.	4.1	55
194	Carbon-Supported IrCoO nanoparticles as an efficient and stable OER electrocatalyst for practicable CO2 electrolysis. Applied Catalysis B: Environmental, 2020, 269, 118820.	20.2	54
195	Role of Water in the Chlorine Evolution Reaction at RuO ₂ â€Based Electrodes—Understanding Electrocatalysis as a Resonance Phenomenon. ChemSusChem, 2012, 5, 1897-1904.	6.8	53
196	Transition metal loaded silicon carbide-derived carbons with enhanced catalytic properties. Carbon, 2012, 50, 1861-1870.	10.3	53
197	Preparation, characterization and degradation mechanisms of PtCu alloy nanoparticles for automotive fuel cells. Journal of Power Sources, 2012, 208, 288-295.	7.8	53
198	Tandem cathode for proton exchange membrane fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 9326.	2.8	53

#	Article	IF	CITATIONS
199	<i>In Situ</i> Stability Studies of Platinum Nanoparticles Supported on Rutheniumâ^'Titanium Mixed Oxide (RTO) for Fuel Cell Cathodes. ACS Catalysis, 2018, 8, 9675-9683.	11.2	51
200	Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2013, 222, 169-176.	7.8	50
201	Molecular Understanding of the Impact of Saline Contaminants and Alkaline pH on NiFe Layered Double Hydroxide Oxygen Evolution Catalysts. ACS Catalysis, 2021, 11, 6800-6809.	11.2	50
202	N,N-Dialkylcarbamato Complexes of the d10 cations of copper, silver, and gold. Helvetica Chimica Acta, 1998, 81, 219-230.	1.6	49
203	Iridium(1 1 1), Iridium(1 1 0), and Ruthenium(0 0 0 1) Single Crystals as Model Ca Evolution Reaction: Insights into the Electrochemical Oxide Formation and Electrocatalytic Activity. ChemCatChem, 2017, 9, 597-603.	atalysts for 3.7	the Oxygei 49
204	Polyformamidineâ€Derived Nonâ€Noble Metal Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2018, 28, 1707551.	14.9	49
205	Standing Wave Oscillations in an Electrocatalytic Reaction. Journal of Physical Chemistry A, 2000, 104, 1854-1860.	2.5	48
206	Micelle-Templated Oxides and Carbonates of Zinc, Cobalt, and Aluminum and a Generalized Strategy for Their Synthesis. Chemistry of Materials, 2013, 25, 2749-2758.	6.7	47
207	Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects. Physical Chemistry Chemical Physics, 2014, 16, 18866-18876.	2.8	46
208	Suppression of Competing Reaction Channels by Pb Adatom Decoration of Catalytically Active Cu Surfaces During CO ₂ Electroreduction. ACS Catalysis, 2019, 9, 1482-1488.	11.2	46
209	Electrocatalytic CO ₂ Reduction on CuO _{<i>x</i>} Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity using Operando Spectroscopy. Angewandte Chemie, 2020, 132, 18130-18139.	2.0	45
210	Oxideâ€Supported IrNiO _{<i>x</i>} Core–Shell Particles as Efficient, Costâ€Effective, and Stable Catalysts for Electrochemical Water Splitting. Angewandte Chemie, 2015, 127, 3018-3022.	2.0	44
211	Carbon Monoxide-Induced Stability and Atomic Segregation Phenomena in Shape-Selected Octahedral PtNi Nanoparticles. ACS Nano, 2015, 9, 10686-10694.	14.6	44
212	Spatio-temporal interfacial potential patterns during the electrocatalyzed oxidation of formic acid on Bi-modified Pt. Journal of Chemical Physics, 2001, 115, 1485-1492.	3.0	42
213	Mildly Oxidized MXene (Ti ₃ C ₂ , Nb ₂ C, and V ₂ C) Electrocatalyst via a Generic Strategy Enables Longevous Li–O ₂ Battery under a High Rate. ACS Nano, 2021, 15, 19640-19650.	14.6	42
214	Micelleâ€Templated Mesoporous Films of Magnesium Carbonate and Magnesium Oxide. Advanced Materials, 2012, 24, 3115-3119.	21.0	40
215	Hydrophobic Nanoreactor Softâ€Templating: A Supramolecular Approach to Yolk@Shell Materials. Advanced Functional Materials, 2015, 25, 6228-6240.	14.9	40
216	Electrochemical Dealloying of Bimetallic ORR Nanoparticle Catalysts at Constant Electrode Potentials. Journal of the Electrochemical Society, 2015, 162, F403-F409.	2.9	40

#	Article	IF	CITATIONS
217	pH-Induced versus Oxygen-Induced Surface Enrichment and Segregation Effects in Pt–Ni Alloy Nanoparticle Fuel Cell Catalysts. ACS Catalysis, 2017, 7, 6376-6384.	11.2	40
218	Surface site density and utilization of platinum group metal (PGM)-free Fe–NC and FeNi–NC electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 384-396.	7.4	40
219	Electrocatalytic Oxygen Reduction on Dealloyed Pt1-xNix Alloy Nanoparticle Electrocatalysts. Electrocatalysis, 2012, 3, 265-273.	3.0	39
220	Detailed analysis of the influence of an inductively coupled plasma reactive-ion etching process on the hole depth and shape of photonic crystals in InPâ^InGaAsP. Journal of Vacuum Science & Technology B, 2007, 25, 387.	1.3	38
221	Photocatalytic reduction of CO2 to hydrocarbons by using photodeposited Pt nanoparticles on carbon-doped titania. Catalysis Today, 2019, 328, 8-14.	4.4	38
222	Multiple activation of ion track etched polycarbonate for the electroless synthesis of metal nanotubes. Applied Physics A: Materials Science and Processing, 2011, 105, 847-854.	2.3	37
223	Concave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts. Journal of Materials Chemistry A, 2019, 7, 1149-1159.	10.3	37
224	An efficient proximity-effect correction method for electron-beam patterning of photonic-crystal devices. Microelectronic Engineering, 2003, 67-68, 182-188.	2.4	35
225	Nonâ€Noble Metal Oxides and their Application as Bifunctional Catalyst in Reversible Fuel Cells and Rechargeable Air Batteries. ChemCatChem, 2018, 10, 4162-4171.	3.7	35
226	The effect of interfacial pH on the surface atomic elemental distribution and on the catalytic reactivity of shape-selected bimetallic nanoparticles towards oxygen reduction. Nano Energy, 2016, 27, 390-401.	16.0	33
227	Electrocatalytic Oxygen Evolution Reaction on Iridium Oxide Model Film Catalysts: Influence of Oxide Type and Catalyst Substrate Interactions. ECS Transactions, 2013, 58, 39-51.	0.5	32
228	In Situ Formed "Sn _{1–} <i>_X</i> In <i>_X</i> @In _{1–} <i>_YCore@Shell Nanoparticles as Electrocatalysts for CO₂ Reduction to Formate. Advanced Functional Materials, 2021, 31, 2103601.</i>	>Sn~i> <sı 14.9</sı 	ıb ₃₂ <
229	A lithium–tellurium rechargeable battery with exceptional cycling stability. Journal of Applied Electrochemistry, 2016, 46, 627-633.	2.9	31
230	Analysis of oxygen evolving catalyst coated membranes with different current collectors using a new modified rotating disk electrode technique. Electrochimica Acta, 2019, 317, 722-736.	5.2	30
231	Catalyst Preoxidation and EDTA Electrolyte Additive Remedy Activity and Selectivity Declines During Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2019, 123, 2165-2174.	3.1	30
232	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie, 2021, 133, 14567-14578.	2.0	30
233	Natalizumab therapy decreases surface expression of both VLA-heterodimer subunits on peripheral blood mononuclear cells. Journal of Neuroimmunology, 2011, 234, 148-154.	2.3	29
234	Oxygen Evolution Catalysts Based on Ir–Ti Mixed Oxides with Templated Mesopore Structure: Impact of Ir on Activity and Conductivity. ChemSusChem, 2018, 11, 2367-2374.	6.8	29

#	Article	IF	CITATIONS
235	Highly efficient electrochemical production of hydrogen peroxide over nitrogen and phosphorus dual-doped carbon nanosheet in alkaline medium. Journal of Electroanalytical Chemistry, 2021, 896, 115197.	3.8	29
236	Covalent Organic Framework (COF) Derived Niâ€N Catalysts for Electrochemical CO ₂ Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
237	Impact of Carbon N-Doping and Pyridinic-N Content on the Fuel Cell Performance and Durability of Carbon-Supported Pt Nanoparticle Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 18420-18430.	8.0	28
238	Ru clusters anchored on Magnéli phase Ti4O7 nanofibers enables flexible and highly efficient Li–O2 batteries. Energy Storage Materials, 2022, 50, 355-364.	18.0	28
239	Modeling galvanostatic potential oscillations in the electrocatalytic iodate reduction system. Journal of Electroanalytical Chemistry, 1999, 462, 19-33.	3.8	27
240	Heterologous Expression, Purification, and Kinetic Comparison of the Cytoplasmic and Mitochondrial Glyoxalase II Enzymes, Glo2p and Glo4p, from Saccharomyces cerevisiae. Protein Expression and Purification, 1999, 17, 456-464.	1.3	27
241	In situ voltammetric de-alloying of fuel cell catalyst electrode layer: A combined scanning electron microscope/electron probe micro-analysis study. Journal of Power Sources, 2009, 190, 40-47.	7.8	27
242	Growth Trajectories and Coarsening Mechanisms of Metal Nanoparticle Electrocatalysts. ChemCatChem, 2012, 4, 766-770.	3.7	27
243	Oxygen Electrocatalysis on Dealloyed Pt Nanocatalysts. Topics in Catalysis, 2016, 59, 1628-1637.	2.8	27
244	The Electro-Deposition/Dissolution of CuSO ₄ Aqueous Electrolyte Investigated by <i>In Situ</i> Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 780-787.	2.6	26
245	Size and Composition Dependence of Oxygen Reduction Reaction Catalytic Activities of Mo-Doped PtNi/C Octahedral Nanocrystals. ACS Catalysis, 2021, 11, 11407-11415.	11.2	26
246	Improvement of the immune response against plasmid DNA encoding OspC of Borrelia by an ER-targeting leader sequence. Vaccine, 1999, 18, 815-824.	3.8	25
247	Fabrication of a hard mask for InP based photonic crystals: Increasing the plasma-etch selectivity of poly(methyl methacrylate) versus SiO[sub 2] and SiN[sub x]. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 3197.	1.6	25
248	The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles. Angewandte Chemie, 2017, 129, 6633-6638.	2.0	25
249	Analysis of a mechanism of the chlorite-iodide reaction. The Journal of Physical Chemistry, 1993, 97, 2851-2862.	2.9	24
250	Spatial entrainment of patterns during the polymerization of acrylamide in the presence of the methylene blue–sulfide chemical oscillator. Chemical Physics Letters, 1999, 313, 205-210.	2.6	24
251	Recombinant viral sialate-O-acetylesterases. Glycoconjugate Journal, 2003, 20, 551-561.	2.7	23
252	Dealloyed Pt Nanoparticle Fuel Cell Electrocatalysts: Stability and Aging Study of Catalyst Powders, Thin Films, and Inks. Journal of the Electrochemical Society, 2010, 157, B585.	2.9	23

#	Article	IF	CITATIONS
253	Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts. Physical Chemistry Chemical Physics, 2010, 12, 5694.	2.8	23
254	Suitability of Simplified (Ir,Ti)Ox Films for Characterization during Electrocatalytic Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2013, 117, 25443-25450.	3.1	23
255	Synthesis–structure correlations of manganese–cobalt mixed metal oxide nanoparticles. Journal of Energy Chemistry, 2016, 25, 278-281.	12.9	23
256	Electrochemical Synthesis of Polymerized LiC60Films. Journal of Physical Chemistry B, 1998, 102, 4131-4134.	2.6	22
257	Niâ€Catalyzed Growth of Graphene Layers during Thermal Annealing: Implications for the Synthesis of Carbonâ€Supported PtNi Fuelâ€Cell Catalysts. ChemCatChem, 2013, 5, 2691-2694.	3.7	22
258	Atomic Insights into Aluminiumâ€lon Insertion in Defective Anatase for Batteries. Angewandte Chemie - International Edition, 2020, 59, 19247-19253.	13.8	22
259	Modular Design of Highly Active Unitized Reversible Fuel Cell Electrocatalysts. ACS Energy Letters, 2021, 6, 177-183.	17.4	22
260	Electrochemical Strain Dynamics in Noble Metal Nanocatalysts. Journal of the American Chemical Society, 2021, 143, 17068-17078.	13.7	22
261	Voltammetric Surface Dealloying of Pt Bimetallic Nanoparticles: A Novel Synthetic Method Towards more Efficient ORR Electrocatalysts. ECS Transactions, 2007, 11, 167-180.	0.5	20
262	Exploiting cationic vacancies for increased energy densities in dual-ion batteries. Energy Storage Materials, 2020, 25, 154-163.	18.0	20
263	Molecular Analysis of the Unusual Stability of an IrNbO <i>_x</i> Catalyst for the Electrochemical Water Oxidation to Molecular Oxygen (OER). ACS Applied Materials & Interfaces, 2021, 13, 3748-3761.	8.0	20
264	In Situ Observation of the Thermally Induced Growth of Platinumâ€Nanoparticle Catalysts Using Highâ€Temperature Xâ€ray Diffraction. ChemPhysChem, 2012, 13, 828-834.	2.1	19
265	PdAuCu Nanobranch as Selfâ€Repairing Electrocatalyst for Oxygen Reduction Reaction. ChemSusChem, 2017, 10, 1469-1474.	6.8	19
266	Accelerated Degradation Protocols for Iridium-Based Oxygen Evolving Catalysts in Water Splitting Devices. Journal of the Electrochemical Society, 2021, 168, 034508.	2.9	19
267	Existence regions of spatiotemporal patterns in the electro-oxidation of formic acid. Physical Chemistry Chemical Physics, 2003, 5, 935-938.	2.8	18
268	In-Situ, In-Layer De-Alloying of Pt-M Intermetallics for High Performance PEMFC Electrode Layers: MEA Activity and Durability Studies. ECS Transactions, 2007, 11, 933-939.	0.5	18
269	Structure-Activity Relationship of Dealloyed PtCo3 and PtCu3 Nanoparticle Electrocatalyst for Oxygen Reduction Reaction in PEMFC. ECS Transactions, 2010, 33, 333-341.	0.5	18
270	A One-Pot Approach to Mesoporous Metal Oxide Ultrathin Film Electrodes Bearing One Metal Nanoparticle per Pore with Enhanced Electrocatalytic Properties. Chemistry of Materials, 2013, 25, 4645-4652.	6.7	18

#	Article	IF	CITATIONS
271	Comparative assessment of synthetic strategies toward active platinum–rhodium–tin electrocatalysts for efficient ethanol electro-oxidation. Journal of Power Sources, 2015, 294, 299-304.	7.8	18
272	Seed-Mediated Synthesis and Catalytic ORR Reactivity of Facet-Stable, Monodisperse Platinum Nano-Octahedra. ACS Applied Energy Materials, 2021, 4, 9542-9552.	5.1	18
273	First detection of the Anaplasma phagocytophilum groEL-A genotype in man. Journal of Infection, 2010, 60, 300-305.	3.3	17
274	Ir-Ni Bimetallic OER Catalysts Prepared by Controlled Ni Electrodeposition on Irpoly and Ir(111). Surfaces, 2018, 1, 165-186.	2.3	17
275	Tuning the Catalytic Oxygen Reduction Reaction Performance of Pt-Ni Octahedral Nanoparticles by Acid Treatments and Thermal Annealing. Journal of the Electrochemical Society, 2018, 165, J3026-J3030.	2.9	17
276	Highly efficient AuNi-Cu2O electrocatalysts for the oxygen reduction and evolution reactions: Important role of interaction between Au and Ni engineered by leaching of Cu2O. Electrochimica Acta, 2018, 283, 1411-1417.	5.2	17
277	Assessing Optical and Electrical Properties of Highly Active IrO <i>_x</i> Catalysts for the Electrochemical Oxygen Evolution Reaction via Spectroscopic Ellipsometry. ACS Catalysis, 2020, 10, 14210-14223.	11.2	17
278	Near-field optics and control of photonic crystals. Photonics and Nanostructures - Fundamentals and Applications, 2005, 3, 63-74.	2.0	16
279	Activity and Structure of Dealloyed PtNi ₃ Nanoparticle Electrocatalyst for Oxygen Reduction Reaction in PEMFC. ECS Transactions, 2011, 41, 1079-1088.	0.5	16
280	Analysis of Surface Oxidation on Pt and Pt Core-Shell Electrocatalysts for PEFCs. Journal of the Electrochemical Society, 2012, 159, B554-B563.	2.9	16
281	Tailored mesoporous Ir/TiOx: Identification of structure-activity relationships for an efficient oxygen evolution reaction. Journal of Catalysis, 2019, 376, 209-218.	6.2	16
282	Quantitative Spurenbestimmung von Quecksilber im Harn nach elektrolytischer Anreicherung. Fresenius Zeitschrift Für Analytische Chemie, 1971, 256, 123-128.	0.8	15
283	Controlled hydroxy-fluorination reaction of anatase to promote Mg ²⁺ mobility in rechargeable magnesium batteries. Chemical Communications, 2018, 54, 10080-10083.	4.1	15
284	Mechanistic Analysis of Electrochemical Oscillators Using Derivative Feedback Control Techniques. Journal of Physical Chemistry B, 1998, 102, 3227-3237.	2.6	14
285	MMPâ€9 haplotypes and carotid artery atherosclerosis: An association study introducing a novel multicolour multiplex RealTime PCR protocol. European Journal of Clinical Investigation, 2008, 38, 24-33.	3.4	14
286	Oxygen Evolution Co-Catalysts at Fuel Cell Cathodes for Degradation Mitigation during Simulated Start-up Shut-down Cycles. ECS Transactions, 2009, 25, 565-571.	0.5	14
287	A high-performance Te@CMK-3 composite negative electrode for Na rechargeable batteries. Journal of Applied Electrochemistry, 2018, 48, 1265-1271.	2.9	14
288	Electroactivation-induced IrNi nanoparticles under different pH conditions for neutral water oxidation. Nanoscale, 2020, 12, 14903-14910.	5.6	14

#	Article	IF	CITATIONS
289	Impact of Carbon Support Mesoâ€Porosity on Mass Transport and Performance of PEMFC Cathode Catalyst Layers. ChemCatChem, 2021, 13, 4759-4769.	3.7	14
290	Property-reactivity relations of N-doped PEM fuel cell cathode catalyst supports. Applied Catalysis B: Environmental, 2022, 306, 121118.	20.2	14
291	Hyperchaos and chemical turbulence in enzymatic reactionâ€diffusion systems. Journal of Chemical Physics, 1996, 104, 9974-9982.	3.0	13
292	De-Alloyed Pt-M Nanoparticle Electrocatalysts for Efficient Electroreduction of Oxygen: Structure-Activity-Stability Relationships. ECS Transactions, 2007, 11, 205-215.	0.5	13
293	One pot microwave synthesis of highly stable AuPd@Pd supported core–shell nanoparticles. Faraday Discussions, 2018, 208, 409-425.	3.2	13
294	Mo-doped Shaped Nanoparticles based on PtNi-alloys – A Promising ORR catalyst?. ECS Transactions, 2016, 75, 723-730.	0.5	12
295	The Role of Surface Hydroxylation, Lattice Vacancies and Bond Covalency in the Electrochemical Oxidation of Water (OER) on Ni-Depleted Iridium Oxide Catalysts. Zeitschrift Fur Physikalische Chemie, 2020, 234, 787-812.	2.8	12
296	Electrochemical Stability of PtCu and PtCuCo Core-Shell Oxygen Reduction Reaction Electrocatalysts in Liquid Electrolyte. ECS Transactions, 2008, 16, 509-514.	0.5	11
297	Validation of antibody-based tools for galanin research. Peptides, 2019, 120, 170009.	2.4	11
298	Efficient electrolysis of 5-hydroxymethylfurfural to the biopolymer-precursor furandicarboxylic acid in a zero-gap MEA-type electrolyzer. Cell Reports Physical Science, 2021, 2, 100650.	5.6	11
299	Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst. Applied Catalysis A: General, 2015, 493, 25-32.	4.3	10
300	Nafionâ€Free Carbonâ€6upported Electrocatalysts with Superior Hydrogen Evolution Reaction Performance by Soft Templating. ChemElectroChem, 2017, 4, 221-229.	3.4	10
301	Ferritin in glioblastoma. British Journal of Cancer, 2020, 122, 1441-1444.	6.4	10
302	Assessing the Realizable Flexibility Potential of Electrochemical Processes. Industrial & Engineering Chemistry Research, 2021, 60, 13637-13660.	3.7	10
303	Towards a Harmonized Accelerated Stress Test Protocol for Fuel Starvation Induced Cell Reversal Events in PEM Fuel Cells: The Effect of Pulse Duration. Journal of the Electrochemical Society, 2020, 167, 124520.	2.9	10
304	Understanding the Performance Increase of Catalysts Supported on N-Functionalized Carbon in PEMFC Catalyst Layers. Journal of the Electrochemical Society, 2022, 169, 054520.	2.9	10
305	Anisotropy of Pt nanoparticles on carbon- and oxide-support and their structural response to electrochemical oxidation probed by <i>in situ</i> techniques. Physical Chemistry Chemical Physics, 2020, 22, 22260-22270.	2.8	9
306	Evidence of Marsâ€Vanâ€Krevelen Mechanism in the Electrochemical Oxygen Evolution on Niâ€Based Catalysts. Angewandte Chemie, 2021, 133, 15108-15115.	2.0	9

#	Article	IF	CITATIONS
307	Corrosion and ORR activity of Pt alloy electrocatalysts during voltammetric pretreatment. ECS Transactions, 2006, 3, 139-149.	0.5	8
308	Sidewall roughness measurement inside photonic crystal holes by atomic force microscopy. Nanotechnology, 2007, 18, 405703.	2.6	8
309	Simplified Microwave Assisted Solvothermal One Pot Synthesis of Highly Active Nickel-Iron Layered Double Hydroxide as Oxygen Evolution Reaction Catalyst. ECS Transactions, 2016, 75, 1113-1119.	0.5	8
310	Metallic Iridium Thin-Films as Model Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)—Morphology and Activity. Surfaces, 2018, 1, 151-164.	2.3	8
311	Multivalent Mg ²⁺ -, Zn ²⁺ -, and Ca ²⁺ -lon Intercalation Chemistry in a Disordered Layered Structure. ACS Applied Energy Materials, 2020, 3, 9143-9150.	5.1	8
312	A <i>TOMM40/APOE</i> allele encoding <i>APOE</i> ‣3 predicts high likelihood of lateâ€onset Alzheimer's disease in autopsy cases. Molecular Genetics & Genomic Medicine, 2020, 8, e1317.	1.2	8
313	Polymer electrolyte membrane (PEM) electrolysis of H2O2 from O2 and H2O with continuous on-line spectrophotometric product detection: Load flexibility studies. Journal of Electroanalytical Chemistry, 2021, 896, 115465.	3.8	8
314	Particle size-controlled synthesis of high-performance MnCo-based materials for alkaline OER at fluctuating potentials. Catalysis Science and Technology, 2021, 11, 7278-7286.	4.1	8
315	Covalent Organic Framework (COF) Derived Niâ€N Catalysts for Electrochemical CO ₂ Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie, 2022, 134, .	2.0	8
316	Influence of proximity effects in electron-beam lithography on the optical properties of planar photonic-crystal waveguides. Journal of Applied Physics, 2007, 102, 083110.	2.5	7
317	Aging Studies of Voltammetrically Dealloyed Pt-Cu Nanoparticle ORR Electrocatalysts. ECS Transactions, 2008, 16, 515-522.	0.5	7
318	Spatiotemporal self-organization in the oscillatory HCOOH oxidation on a Pt ribbon electrode – Theory and experiments. Surface Science, 2009, 603, 1652-1661.	1.9	7
319	High Throughput Discovery of Families of High Activity WGS Catalysts: Part I - History and Methodology. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 318-330.	1.1	7
320	Supported metal oxide nanoparticle electrocatalysts: How immobilization affects catalytic performance. Applied Catalysis A: General, 2018, 568, 11-15.	4.3	7
321	Past, Present and Future of Hay-making Structures in Europe. Sustainability, 2019, 11, 5581.	3.2	7
322	Hsa-miR-375/RASD1 Signaling May Predict Local Control in Early Breast Cancer. Genes, 2020, 11, 1404.	2.4	7
323	Rapid synthesis of supported single metal nanoparticles and effective removal of stabilizing ligands. Journal of Materials Chemistry A, 2021, 9, 24283-24289.	10.3	7
324	Dealloyed Pt-Based Core–Shell Catalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, , 533-560.	0.3	6

#	Article	IF	CITATIONS
325	Multi-level assessment of obsessive-compulsive disorder (OCD) reveals relations between neural and neurochemical levels. BMC Psychiatry, 2020, 20, 559.	2.6	6
326	Highly Active and Stable Large Mo-Doped Pt–Ni Octahedral Catalysts for ORR: Synthesis, Post-treatments, and Electrochemical Performance and Stability. ACS Applied Materials & Interfaces, 2022, 14, 29690-29702.	8.0	6
327	Surface Electrochemistry. , 2008, , 397-455.		5
328	In-situ High Temperature X-ray Diffraction Study of PtCu3 Alloy Electrocatalyst for PEMFC. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2111-2111.	1.2	5
329	Oxygen Electroreduction on PtxCo1-x and PtxCu1-x Alloy Nanoparticles for Basic and Acidic PEM Fuel Cell. ECS Transactions, 2011, 41, 1659-1668.	0.5	5
330	Small angle X-ray scattering (SAXS) techniques for polymer electrolyte membrane fuel cell characterization. , 2012, , 87-119.		5
331	Improving Silicon Photocathode Performance for Water Reduction through Dual Interface Engineering and Integrating ReS ₂ Photocatalyst. ACS Applied Energy Materials, 2022, 5, 8222-8231.	5.1	5
332	Use of Anomalous X-ray Scattering for Probing the Structure, Composition and Size of Binary Alloy Nanoparticle Electrocatalysts. ECS Transactions, 2008, 16, 595-601.	0.5	4
333	Combinatorial Synthesis and High-Throughput Screening of Fuel Cell Electrocatalysts. , 2005, , 271-297.		3
334	Photonic integration for high-denisty and multifunctionality in the InP-material system. , 2006, , .		3
335	NanopartikulÃæ bimetallische Kern-Schale-Katalysatoren für Brennstoffzellen. Chemie-Ingenieur-Technik, 2008, 80, 1267-1267.	0.8	3
336	Effects of Annealing Conditions on Catalytic Activities of Pt-Cu Nanoparticle Electrocatalysts for PEM Fuel Cells. ECS Transactions, 2009, 16, 1093-1103.	0.5	3
337	Nanostrukturierte Kernâ€Schaleâ€Katalysatoren für PEMâ€Brennstoffzellen – Hochaktive Materialien durch partielle Entlegierung. Chemie-Ingenieur-Technik, 2009, 81, 573-580.	0.8	3
338	A Study of Au/C Nanoparticles with Pt Monolayer and Sub-Monolayer Electrocatalysts for Ethanol Oxidation Reaction. ECS Transactions, 2013, 58, 1733-1736.	0.5	3
339	Coupled Inductive Annealingâ€Electrochemical Setup for Controlled Preparation and Characterization of Alloy Crystal Surface Electrodes. Small Methods, 2019, 3, 1800232.	8.6	3
340	A Comparative Study of the Catalytic Performance of Pt-Based Bi and Trimetallic Nanocatalysts Towards Methanol, Ethanol, Ethylene Glycol, and Glycerol Electro-Oxidation. Journal of Nanoscience and Nanotechnology, 2020, 20, 6274-6285.	0.9	3
341	Instabilities in a Simple Enzyme Reaction Caused by pH-Dependence. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1995, 50, 1147-1150.	1.5	2

Peter Strasser

#	Article	IF	CITATIONS
343	Dealloying of Pt Bimetallic Catalysts at Constant Electrode Potentials. ECS Transactions, 2013, 58, 581-586.	0.5	2
344	Core-Shell Fine Structure and Size-Dependent Morphology of Dealloyed Pt Bimetallic Nanoparticle Fuel Cell Electrocatalysts. ECS Transactions, 2013, 50, 1633-1641.	0.5	2
345	Design and Validation of a Fluidized Bed Catalyst Reduction Reactor for the Synthesis of Well-Dispersed Nanoparticle Ensembles. Journal of the Electrochemical Society, 2020, 167, 114509.	2.9	2
346	Solute Incorporation at Oxide–Oxide Interfaces Explains How Ternary Mixedâ€Metal Oxide Nanocrystals Support Element‧pecific Anisotropic Growth. Advanced Functional Materials, 2020, 30, 1909054.	14.9	2
347	Electro-catalysts for oxygen electrodes in seawater electrolyzers (OER) and reversible electrolyzers (OER/ORR). , 2021, , 83-103.		2
348	Publisher's Note: Combinatorial Study of High-Surface-Area Binary and Ternary Electrocatalysts for the Oxygen Evolution Reaction [J. Electrochem. Soc., 156, B363 (2009)]. Journal of the Electrochemical Society, 2009, 156, S6.	2.9	1
349	Research update for articles published in EJCI in 2008. European Journal of Clinical Investigation, 2010, 40, 770-789.	3.4	1
350	Inside Cover: Electrocatalysis Using Porous Nanostructured Materials (ChemPhysChem 6/2012). ChemPhysChem, 2012, 13, 1366-1366.	2.1	1
351	High-Precision Microwave Spectroscopy of Muonium for Determination of Muonic Magnetic Moment. International Journal of Modern Physics Conference Series, 2016, 40, 1660076.	0.7	1
352	Online Carbon Corrosion Analysis of a Novel, Alloyed PtTi/C in PEM Fuel Cells Using a Non-Dispersive-Infrared System. ECS Transactions, 2019, 92, 547-552.	0.5	1
353	Atomic Insights into Aluminiumâ€lon Insertion in Defective Anatase for Batteries. Angewandte Chemie, 2020, 132, 19409-19415.	2.0	1
354	Lowâ€₽t NiNC‣upported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process. Angewandte Chemie, 2022, 134, .	2.0	1
355	Voltammetric Dealloying of Pt-Cu Bimetallic Nanoparticle Electrocatalysts. ECS Meeting Abstracts, 2008, , .	0.0	0
356	Novel mutation at codon 110 of the human APOE gene: impact on genotyping with fluorescent hybridization probes. Clinical Chemistry and Laboratory Medicine, 2010, 48, 1835-6.	2.3	0
357	Structure and Catalytic Activity of Dealloyed Pt Bimetallic Surfaces: A Comparative Study of Single-Crystals, Films and Nanoparticles. ECS Meeting Abstracts, 2011, , .	0.0	0
358	Structure-Activity Relations in the Electrocatalytic Oxygen Evolution Reaction on Metals and Oxides. ECS Meeting Abstracts, 2011, , .	0.0	0
359	Stability and Degradation of Dealloyed PtCu3, PtCo3 and PtNi3 Nanoparticle PEM Fuel Cell Electrocatalysts. ECS Meeting Abstracts, 2011, , .	0.0	0
360	Dicyanamide Ionic Liquids: A Versatile Precursor System for Advanced Mesoporous Materials and Functional Composites. Materials Research Society Symposia Proceedings, 2012, 1473, 13.	0.1	0

#	Article	IF	CITATIONS
361	Core-Shell Fine Structure and Size-Dependent Morphology of Dealloyed Pt Bimetallic Nanoparticle Fuel Cell Electrocatalysts. ECS Meeting Abstracts, 2012, , .	0.0	0
362	Atomic Imaging and Spectroscopy of Size-Dependent Degradation of Pt Bimetallic Fuel Cell Catalysts. ECS Transactions, 2013, 58, 1471-1475.	0.5	0
363	Structural and Compositional Behaviors of Shaped Pt Alloy Nanoparticle Electrocatalysts. ECS Transactions, 2013, 58, 575-579.	0.5	0
364	Dealloying of Pt Bimetallic Catalysts at Constant Electrode Potentials. ECS Meeting Abstracts, 2013, , .	0.0	0
365	Hsa-miR-375 and local control in early stage breast cancer. European Journal of Cancer, 2016, 61, S182-S183.	2.8	0
366	Surface Electrocatalysis: Coupled Inductive Annealing-Electrochemical Setup for Controlled Preparation and Characterization of Alloy Crystal Surface Electrodes (Small Methods 8/2019). Small Methods, 2019, 3, 1970025.	8.6	0
367	Synthesis of Homogeneous Distributed Nanoparticles Using a Fluidized Bed Reactor. ECS Transactions, 2019, 92, 579-587.	0.5	Ο
368	Challenge in metal-air batteries: From the design to the performance of metal oxide-based electrocatalysts. , 2021, , 187-212.		0
369	Combinatorial Development of Ternary Electrocatalysts for Methanol Oxidation. , 2007, , .		0
370	Protected sites in the Alps with an internationally awarded natural or cultural designation as of 1 January 2015 – an overview. Eco Mont, 2016, 8, 68-75.	0.1	0
371	Synthesis of Homogeneous Distributed Nanoparticles Using a Fluidized Bed Reactor. ECS Meeting Abstracts, 2019, , .	0.0	Ο
372	High-Rate Electrochemical Reduction of CO2 to C2-3 Products Under Neutral, Aqueous Condition, Tracing the Evolution of Phase and Morphology of Cu2o Nanocubes Towards Rational Catalyst Design. ECS Meeting Abstracts, 2019, , .	0.0	0
373	Online Carbon Corrosion Analysis of a Novel, Alloyed PtTi/C in PEM Fuel Cells Using a Non-Dispersive-Infrared System. ECS Meeting Abstracts, 2019, , .	0.0	Ο
374	High Performance Fuel Cell Catalysts Synthesized By Fe Metalation of Nitrogen Doped Carbons Derived from Metal Organic Framework ZIF-8. ECS Meeting Abstracts, 2019, , .	0.0	0
375	Mechanistic Studies of the Electrochemical CO2 Reduction on Single Site, Metallic and Hybrid Electrocatalysts. , 0, , .		Ο
376	Electrochemical Conversion of CO2 into Hydrocarbons at Industrial Current Densities on Shaped Copper-oxide Gas Diffusion Electrodes. , 0, , .		0
377	(Invited) First Principles Studies of Oxygen Cycle Electrocatalysis: Multifunctional Materials and Reactivity Trends. ECS Meeting Abstracts, 2020, MA2020-01, 1522-1522.	0.0	0
378	(Invited) Pt Alloy Octahedral Nanoparticle Catalysts from Screening Studies to Fuel Cell Measurements. ECS Meeting Abstracts, 2021, MA2021-02, 1192-1192.	0.0	0

#	Article	IF	CITATIONS
379	A H2O2 PEM Electrolyser with Continuous Online Spectrophotometric Product Detection: Load Flexibility Studies. ECS Meeting Abstracts, 2021, MA2021-02, 1265-1265.	0.0	0
380	Mechanistic Studies of the Electrochemical CO2 Reduction on Single Site, Metallic and Hybrid Electrocatalysts. , 0, , .		0
381	Operando Studies of Hole-Doped IrNiOx core-shell electrocatalysts for Water Oxidation in acidic Environment. , 0, , .		0
382	Electrochemical Conversion of CO2 into Hydrocarbons at Industrial Current Densities on Shaped Copper-oxide Gas Diffusion Electrodes. , 0, , .		0
383	Effect of Global Fuel Starvation on Reversal Tolerant Anode Materials – Pulsed Versus Continuous Cell Reversal Events. ECS Meeting Abstracts, 2020, MA2020-02, 2338-2338.	0.0	0
384	First Principles Analysis of Oxygen Cycle Electrocatalysis: Multifunctional Materials and Reactivity Trends. ECS Meeting Abstracts, 2020, MA2020-02, 2487-2487.	0.0	0
385	Ternary Pt Alloy Catalysts and Carbon Modified Supports for Low Pt Loaded Fuel Cell Cathodes. ECS Meeting Abstracts, 2020, MA2020-02, 2320-2320.	0.0	0
386	(Invited) Structural and Mechanistic Details on the Oxygen Evolution Reaction on Nife Layered Double Hydroxide and Ni(OH)2. ECS Meeting Abstracts, 2020, MA2020-02, 3256-3256.	0.0	0
387	(Keynote) Mechanistic Studies of the Electrochemical CO ₂ Reduction on Single Site, Metallic and Hybrid Electrocatalysts. ECS Meeting Abstracts, 2020, MA2020-02, 3203-3203.	0.0	0
388	Catalytically-Active Phases and Reaction Mechanism of Ni-Based and Co-Based Layered Double Hydroxides for the Oxygen Evolution Reaction. ECS Meeting Abstracts, 2022, MA2022-01, 1368-1368.	0.0	0