List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/425530/publications.pdf Version: 2024-02-01

Δείο Κιμαρά

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Two Distinct Vps34 Phosphatidylinositol 3–Kinase Complexes Function in Autophagy and Carboxypeptidase Y Sorting inSaccharomyces cerevisiae. Journal of Cell Biology, 2001, 152, 519-530.	5.2	944
4	Beclin–phosphatidylinositol 3â€kinase complex functions at the trans â€Golgi network. EMBO Reports, 2001, 2, 330-335.	4.5	775
5	Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 474-483.	2.4	391
6	Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochemical Journal, 2005, 390, 263-271.	3.7	332
7	Very long-chain fatty acids: elongation, physiology and related disorders. Journal of Biochemistry, 2012, 152, 387-395.	1.7	329
8	Autophagosome Requires Specific Early Sec Proteins for Its Formation and NSF/SNARE for Vacuolar Fusion. Molecular Biology of the Cell, 2001, 12, 3690-3702.	2.1	325
9	ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18439-18444.	7.1	302
10	FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4532-4536.	7.1	250
11	Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie, 2009, 91, 784-790.	2.6	225
12	Metabolism of Very Long-Chain Fatty Acids: Genes and Pathophysiology. Biomolecules and Therapeutics, 2014, 22, 83-92.	2.4	201
13	Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochemical and Biophysical Research Communications, 2007, 357, 212-217.	2.1	166
14	ldentification and Characterization of a Novel Human Sphingosine-1-phosphate Phosphohydrolase, hSPP2. Journal of Biological Chemistry, 2003, 278, 1268-1272.	3.4	161
15	LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochemical Journal, 2006, 398, 531-538.	3.7	160
16	Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. Progress in Lipid Research, 2007, 46, 126-144.	11.6	160
17	Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Progress in Lipid Research, 2016, 63, 50-69.	11.6	160
18	Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO Journal, 2012, 31, 1823-1835.	7.8	152

#	Article	IF	CITATIONS
19	Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. Journal of Lipid Research, 2006, 47, 614-621.	4.2	146
20	The Sjögren-Larsson Syndrome Gene Encodes a Hexadecenal Dehydrogenase of the Sphingosine 1-Phosphate Degradation Pathway. Molecular Cell, 2012, 46, 461-471.	9.7	141
21	Three-dimensional structure of phosphoenolpyruvate carboxylase: A proposed mechanism for allosteric inhibition. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 823-828.	7.1	138
22	Impaired Epidermal Permeability Barrier in Mice Lacking <i>Elovl1</i> , the Gene Responsible for Very-Long-Chain Fatty Acid Production. Molecular and Cellular Biology, 2013, 33, 2787-2796.	2.3	137
23	Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5′-phosphate binding domain exposed to the cytosol. Biochemical and Biophysical Research Communications, 2004, 325, 338-343.	2.1	136
24	FtsH (HflB) Is an ATP-dependent Protease Selectively Acting on SecY and Some Other Membrane Proteins. Journal of Biological Chemistry, 1996, 271, 31196-31201.	3.4	134
25	Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7707-7712.	7.1	134
26	Subunitaof proton ATPase FOsector is a substrate of the FtsH protease inEscherichia coli. FEBS Letters, 1996, 399, 26-28.	2.8	116
27	Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 279, 175-188.	4.2	113
28	Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochemical and Biophysical Research Communications, 2003, 309, 155-160.	2.1	109
29	Host regulation of lysogenic decision in bacteriophage Â: Transmembrane modulation of FtsH (HflB), the cll degrading protease, by HflKC (HflA). Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5544-5549.	7.1	107
30	Lipid Asymmetry of the Eukaryotic Plasma Membrane: Functions and Related Enzymes. Biological and Pharmaceutical Bulletin, 2006, 29, 1542-1546.	1.4	106
31	Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO Journal, 1999, 18, 2970-2981.	7.8	101
32	PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nature Communications, 2017, 8, 14610.	12.8	97
33	Characterization of four mammalian 3â€hydroxyacylâ€CoA dehydratases involved in very longâ€chain fatty acid synthesis. FEBS Letters, 2008, 582, 2435-2440.	2.8	93
34	2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length. Journal of Lipid Research, 2008, 49, 2356-2364.	4.2	91
35	Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Letters, 2011, 585, 3337-3341.	2.8	90
36	Cross Talk between Sphingolipids and Glycerophospholipids in the Establishment of Plasma Membrane Asymmetry. Molecular Biology of the Cell, 2004, 15, 4949-4959.	2.1	89

#	Article	IF	CITATIONS
37	Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Letters, 2004, 563, 93-97.	2.8	88
38	Identification and Characterization of aSaccharomyces cerevisiae Gene, RSB1, Involved in Sphingoid Long-chain Base Release. Journal of Biological Chemistry, 2002, 277, 30048-30054.	3.4	87
39	Csg1p and Newly Identified Csh1p Function in Mannosylinositol Phosphorylceramide Synthesis by Interacting with Csg2p. Journal of Biological Chemistry, 2003, 278, 45049-45055.	3.4	85
40	FVT-1 Is a Mammalian 3-Ketodihydrosphingosine Reductase with an Active Site That Faces the Cytosolic Side of the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2004, 279, 49243-49250.	3.4	82
41	Mouse Sphingosine Kinase Isoforms SPHK1a and SPHK1b Differ in Enzymatic Traits Including Stability, Localization, Modification, and Oligomerization. Journal of Biological Chemistry, 2006, 281, 4532-4539.	3.4	82
42	A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1031-1037.	2.4	82
43	Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nature Communications, 2014, 5, 5338.	12.8	81
44	Rapid trafficking of c-Src, a non-palmitoylated Src-family kinase, between the plasma membrane and late endosomes/lysosomes. Experimental Cell Research, 2007, 313, 2651-2666.	2.6	80
45	Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system. Molecular Biology of the Cell, 2012, 23, 4543-4551.	2.1	79
46	Production and release of sphingosine 1-phosphate and the phosphorylated form of the immunomodulator FTY720. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 496-502.	2.4	77
47	Sphingosine-1-phosphate Lyase Is Involved in the Differentiation of F9 Embryonal Carcinoma Cells to Primitive Endoderm. Journal of Biological Chemistry, 2003, 278, 14578-14585.	3.4	71
48	Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7589-7594.	7.1	70
49	Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast. Cell Chemical Biology, 2016, 23, 1241-1250.	5.2	70
50	Lysophosphatidic Acid 2 Receptor-mediated Supramolecular Complex Formation Regulates Its Antiapoptotic Effect. Journal of Biological Chemistry, 2009, 284, 14558-14571.	3.4	66
51	Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. Journal of Lipid Research, 2020, 61, 884-895.	4.2	66
52	Enzyme Activities of the Ceramide Synthases CERS2–6 Are Regulated by Phosphorylation in the C-terminal Region. Journal of Biological Chemistry, 2016, 291, 7477-7487.	3.4	65
53	Product of a New Gene, syd, Functionally Interacts with SecY when Overproduced in Escherichia coli. Journal of Biological Chemistry, 1995, 270, 5519-5526.	3.4	61
54	Membrane Protein Rim21 Plays a Central Role in Sensing Ambient pH in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2012, 287, 38473-38481.	3.4	58

#	Article	IF	CITATIONS
55	Sphingolipids Regulate the Yeast High-Osmolarity Glycerol Response Pathway. Molecular and Cellular Biology, 2012, 32, 2861-2870.	2.3	56
56	De novo mutation in <i>ELOVL1</i> causes ichthyosis, <i>acanthosis nigricans</i> , hypomyelination, spastic paraplegia, high frequency deafness and optic atrophy. Journal of Medical Genetics, 2019, 56, 164-175.	3.2	54
57	Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 766-772.	2.4	53
58	Biallelic Mutations in KDSR Disrupt Ceramide Synthesis and Result in aÂSpectrum of Keratinization Disorders Associated with Thrombocytopenia. Journal of Investigative Dermatology, 2017, 137, 2344-2353.	0.7	53
59	Membrane Topology and Essential Amino Acid Residues of Phs1, a 3-Hydroxyacyl-CoA Dehydratase Involved in Very Long-chain Fatty Acid Elongation*. Journal of Biological Chemistry, 2008, 283, 11199-11209.	3.4	52
60	Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway. Biochemical and Biophysical Research Communications, 2013, 442, 195-201.	2.1	52
61	Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification. Biochemical Journal, 2015, 465, 79-87.	3.7	51
62	Products by the sphingosine kinase/sphingosine 1-phosphate (S1P) lyase pathway but not S1P stimulate mitogenesis. Genes To Cells, 2005, 10, 605-615.	1.2	50
63	Skin permeability barrier formation by the ichthyosis-causative gene <i>FATP4</i> through formation of the barrier lipid ω- <i>O</i> -acylceramide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2914-2922.	7.1	49
64	Congenital myopathy is caused by mutation of HACD1. Human Molecular Genetics, 2013, 22, 5229-5236.	2.9	48
65	Lorenzo's oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturated very long-chain fatty acid. Journal of Lipid Research, 2014, 55, 524-530.	4.2	48
66	Very longâ€chain tear film lipids produced by fatty acid elongase ELOVL1 prevent dry eye disease in mice. FASEB Journal, 2018, 32, 2966-2978.	0.5	47
67	Sphingolipid synthesis is involved in autophagy in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2011, 410, 786-791.	2.1	46
68	The Rim101 Pathway Is Involved in Rsb1 Expression Induced by Altered Lipid Asymmetry. Molecular Biology of the Cell, 2008, 19, 1922-1931.	2.1	45
69	Roles of the Periplasmic Domain of Escherichia coliFtsH (HflB) in Protein Interactions and Activity Modulation. Journal of Biological Chemistry, 1998, 273, 22326-22333.	3.4	44
70	Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2616-E2623.	7.1	44
71	Signaling Events of the Rim101 Pathway Occur at the Plasma Membrane in a Ubiquitination-Dependent Manner. Molecular and Cellular Biology, 2014, 34, 3525-3534.	2.3	42
72	A role of the sphingosine-1-phosphate (S1P)–S1P receptor 2 pathway in epithelial defense against cancer (EDAC). Molecular Biology of the Cell, 2016, 27, 491-499.	2.1	42

#	Article	IF	CITATIONS
73	Asp177 in C4 domain of mouse sphingosine kinase 1a is important for the sphingosine recognition. FEBS Letters, 2004, 578, 106-110.	2.8	40
74	Long-Chain Base Kinase Lcb4 Is Anchored to the Membrane through Its Palmitoylation by Akr1. Molecular and Cellular Biology, 2005, 25, 9189-9197.	2.3	40
75	Cooperative Synthesis of Ultra Long-Chain Fatty Acid and Ceramide during Keratinocyte Differentiation. PLoS ONE, 2013, 8, e67317.	2.5	40
76	<i>HACD1</i> , a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth. Journal of Molecular Cell Biology, 2015, 7, 429-440.	3.3	40
77	The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 869-879.	2.4	40
78	Transmembrane topology of sphingoid long-chain base-1-phosphate phosphatase, Lcb3p. Genes To Cells, 2003, 8, 525-535.	1.2	38
79	The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways. Journal of Biological Chemistry, 2017, 292, 15538-15551.	3.4	38
80	Very-long-chain fatty acid elongase Elo2 rescues lethal defects associated with loss of the nuclear barrier function. Journal of Cell Science, 2019, 132, .	2.0	38
81	Biosynthesis of the antiâ€lipidâ€microdomain sphingoid base 4,14â€sphingadiene by the ceramide desaturase FADS3. FASEB Journal, 2020, 34, 3318-3335.	0.5	38
82	Dual Functions of the Trans-2-Enoyl-CoA Reductase TER in the Sphingosine 1-Phosphate Metabolic Pathway and in Fatty Acid Elongation. Journal of Biological Chemistry, 2014, 289, 24736-24748.	3.4	37
83	Molecular mechanism of the ichthyosis pathology of Chanarin–Dorfman syndrome: Stimulation of PNPLA1-catalyzed ï‰-O-acylceramide production by ABHD5. Journal of Dermatological Science, 2018, 92, 245-253.	1.9	37
84	Polypeptide binding of Escherichia coli FtsH (HflB). Molecular Microbiology, 2002, 28, 803-812.	2.5	36
85	Regulation of the Transport and Protein Levels of the Inositol Phosphorylceramide Mannosyltransferases Csg1 and Csh1 by the Ca2+-binding Protein Csg2. Journal of Biological Chemistry, 2007, 282, 8613-8621.	3.4	36
86	Lipid polarity gradient formed by ω-hydroxy lipids in tear film prevents dry eye disease. ELife, 2020, 9, .	6.0	35
87	FTY720 Protects Against Ischemia–Reperfusion Injury by Preventing the Redistribution of Tight Junction Proteins and Decreases Inflammation in the Subacute Phase in an Experimental Stroke Model. Translational Stroke Research, 2020, 11, 1103-1116.	4.2	34
88	Translocation, Folding, and Stability of the HflKC Complex with Signal Anchor Topogenic Sequences. Journal of Biological Chemistry, 1998, 273, 29770-29775.	3.4	33
89	The immunomodulator FTY720 is phosphorylated and released from platelets. European Journal of Pharmacology, 2007, 568, 106-111.	3.5	33
90	Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. Journal of Plant Research, 2012, 125, 439-449.	2.4	32

#	Article	IF	CITATIONS
91	Integrin Â9 on lymphatic endothelial cells regulates lymphocyte egress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3080-3085.	7.1	32
92	Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases. Journal of Lipid Research, 2022, 63, 100235.	4.2	32
93	Disruption of the Sjögren-Larsson Syndrome Gene Aldh3a2 in Mice Increases Keratinocyte Growth and Retards Skin Barrier Recovery. Journal of Biological Chemistry, 2016, 291, 11676-11688.	3.4	30
94	Sphingolipids activate the endoplasmic reticulum stress surveillance pathway. Journal of Cell Biology, 2018, 217, 495-505.	5.2	30
95	Revisiting the Lysogenization Control of Bacteriophage λ. Journal of Biological Chemistry, 2001, 276, 13695-13700.	3.4	29
96	Mutation for Nonsyndromic Mental Retardation in the trans-2-Enoyl-CoA Reductase TER Gene Involved in Fatty Acid Elongation Impairs the Enzyme Activity and Stability, Leading to Change in Sphingolipid Profile. Journal of Biological Chemistry, 2013, 288, 36741-36749.	3.4	29
97	Phosphorylation by Pho85 Cyclin-dependent Kinase Acts as a Signal for the Down-regulation of the Yeast Sphingoid Long-chain Base Kinase Lcb4 during the Stationary Phase. Journal of Biological Chemistry, 2005, 280, 6520-6527.	3.4	28
98	Severe Skin Permeability Barrier Dysfunction inÂKnockout Mice Deficient in a Fatty Acid ω-Hydroxylase Crucial to Acylceramide Production. Journal of Investigative Dermatology, 2020, 140, 319-326.e4.	0.7	28
99	Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis. Biochemical Journal, 2006, 394, 237-242.	3.7	27
100	Effects on vesicular transport pathways at the late endosome in cells with limited very long-chain fatty acids. Journal of Lipid Research, 2013, 54, 831-842.	4.2	27
101	The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition. Journal of Biological Chemistry, 2015, 290, 30797-30805.	3.4	25
102	Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases. Scientific Reports, 2016, 6, 25469.	3.3	25
103	Two Modes of Regulation of the Fatty Acid Elongase ELOVL6 by the 3-Ketoacyl-CoA Reductase KAR in the Fatty Acid Elongation Cycle. PLoS ONE, 2014, 9, e101823.	2.5	25
104	Substrate specificity, plasma membrane localization, and lipid modification of the aldehyde dehydrogenase ALDH3B1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1395-1401.	2.4	24
105	Histological analyses by matrix-assisted laser desorption/ionization-imaging mass spectrometry reveal differential localization of sphingomyelin molecular species regulated by particular ceramide synthase in mouse brains. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851. 1554-1565.	2.4	24
106	Unperverted synthesis of complex sphingolipids is essential for cell survival under nitrogen starvation. Genes To Cells, 2013, 18, 650-659.	1.2	21
107	AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells. PLoS ONE, 2016, 11, e0167848.	2.5	21
108	Decreased Skin Barrier Lipid Acylceramide and Differentiation-Dependent Gene Expression in Ichthyosis Gene Nipal4-Knockout Mice. Journal of Investigative Dermatology, 2018, 138, 741-749.	0.7	20

#	Article	IF	CITATIONS
109	Neural symptoms in a gene knockout mouse model of Sjögrenâ€Larsson syndrome are associated with a decrease in 2â€hydroxygalactosylceramide. FASEB Journal, 2019, 33, 928-941.	0.5	20
110	Production of branched-chain very-long-chain fatty acids by fatty acid elongases and their tissue distribution in mammals. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158842.	2.4	19
111	Regulation of the Sphingoid Long-chain Base Kinase Lcb4p by Ergosterol and Heme. Journal of Biological Chemistry, 2005, 280, 36674-36682.	3.4	18
112	A splicing isoform of LPP1, LPP1a, exhibits high phosphatase activity toward FTY720 phosphate. Biochemical and Biophysical Research Communications, 2008, 375, 675-679.	2.1	18
113	Reduced chain length in myelin sphingolipids and poorer motor coordination in mice deficient in the fatty acid elongase <i>Elovl1</i> . FASEB BioAdvances, 2019, 1, 747-759.	2.4	18
114	Hetero-oligomeric interactions of an ELOVL4 mutant protein: implications in the molecular mechanism of Stargardt-3 macular dystrophy. Molecular Vision, 2010, 16, 2438-45.	1.1	18
115	Sphingosine 1-phosphate receptor modulator ONO-4641 stimulates CD11b+Gr-1+ cell expansion and inhibits lymphocyte infiltration in the lungs to ameliorate murine pulmonary emphysema. Mucosal Immunology, 2018, 11, 1606-1620.	6.0	17
116	Palmitoylation of the sphingosine 1â€phosphate receptor S1P ₁ is involved in its signaling functions and internalization. Genes To Cells, 2009, 14, 911-923.	1.2	15
117	Characterization of HACD1 K64Q mutant found in arrhythmogenic right ventricular dysplasia patients. Journal of Biochemistry, 2010, 148, 617-622.	1.7	14
118	The Rim101 pathway contributes to ER stress adaptation through sensing the state of plasma membrane. Biochemical Journal, 2017, 474, 51-63.	3.7	14
119	Diverse meibum lipids produced by Awat1 and Awat2 are important for stabilizing tear film and protecting the ocular surface. IScience, 2021, 24, 102478.	4.1	13
120	A novel factor <i>OPT2</i> mediates exposure of phospholipids during cellular adaptation to altered lipid asymmetry. Journal of Cell Science, 2015, 128, 61-9.	2.0	12
121	Direct uptake of sphingosine-1-phosphate independent of phospholipid phosphatases. Journal of Biological Chemistry, 2021, 296, 100605.	3.4	12
122	Widespread tissue distribution and synthetic pathway of polyunsaturated C24:2 sphingolipids in mammals. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1441-1448.	2.4	11
123	Sphingosine kinase assay system with fluorescent detection in high performance liquid chromatography. Archives of Pharmacal Research, 2006, 29, 1049-1054.	6.3	10
124	Intracellular Trafficking Pathway of Yeast Long-chain Base Kinase Lcb4, from Its Synthesis to Its Degradation. Journal of Biological Chemistry, 2007, 282, 28485-28492.	3.4	10
125	Systematic analysis of Ca ²⁺ homeostasis in <i>Saccharomyces cerevisiae</i> based on chemical-genetic interaction profiles. Molecular Biology of the Cell, 2017, 28, 3415-3427.	2.1	10
126	Comprehensive stratum corneum ceramide profiling reveals reduced acylceramides in ichthyosis patient with CERS3 mutations. Journal of Dermatology, 2021, 48, 447-456.	1.2	10

#	Article	IF	CITATIONS
127	Formation of fatty alcohols—components of meibum lipids—by the fatty acyl oA reductase FAR2 is essential for dry eye prevention. FASEB Journal, 2022, 36, e22216.	0.5	10
128	Intracellular Stability of \hat{I}_{\pm} Fragments of \hat{I}^2 -Galactosidase: Effects of Amino-Terminally Fused Polypeptides. Biochemical and Biophysical Research Communications, 1995, 215, 452-458.	2.1	9
129	Sphingolipid-to-glycerophospholipid conversion in SPL-null cells implies the existence of an alternative isozyme. Biochemical and Biophysical Research Communications, 2005, 329, 474-479.	2.1	9
130	Phs1 and the Synthesis of Very Long Chain Fatty Acids Are Required for Ballistospore Formation. PLoS ONE, 2014, 9, e105147.	2.5	9
131	A sphingosine kinase activity assay using direct infusion electrospray ionization tandem mass spectrometry. Analytical Biochemistry, 2008, 380, 35-40.	2.4	8
132	Structure-inspired design of a sphingolipid mimic sphingosine-1-phosphate receptor agonist from a naturally occurring sphingomyelin synthase inhibitor. Chemical Communications, 2018, 54, 12758-12761.	4.1	8
133	Novel biallelic FA2H mutations in a Japanese boy with fatty acid hydroxylase-associated neurodegeneration. Brain and Development, 2020, 42, 217-221.	1.1	8
134	Hypomyelinating spastic dyskinesia and ichthyosis caused by a homozygous splice site mutation leading to exon skipping in ELOVL1. Brain and Development, 2022, 44, 391-400.	1.1	8
135	Yeast Mpo1 Is a Novel Dioxygenase That Catalyzes the <i>α</i> -Oxidation of a 2-Hydroxy Fatty Acid in an Fe ²⁺ -Dependent Manner. Molecular and Cellular Biology, 2019, 39, .	2.3	7
136	Changes in S1P1 and S1P2 expression during embryonal development and primitive endoderm differentiation of F9 cells. Biochemical and Biophysical Research Communications, 2006, 344, 852-858.	2.1	6
137	Decreases in 15-lipoxygenase metabolites in Olmsted syndrome model rats. Journal of Dermatological Science, 2017, 85, 186-196.	1.9	6
138	Catalytic residues, substrate specificity, and role in carbon starvation of the 2-hydroxy FA dioxygenase Mpo1 in yeast. Journal of Lipid Research, 2020, 61, 1104-1114.	4.2	4
139	Impaired production of the skin barrier lipid acylceramide by CYP4F22 ichthyosis mutations. Journal of Dermatological Science, 2021, 101, 69-71.	1.9	4
140	Amlexanox enhances the antitumor effect of anti-PD-1 antibody. Biochemical and Biophysical Research Communications, 2021, 560, 1-6.	2.1	4
141	Impaired Skin Barrier Function Due to Reduced ω- <i>O</i> -Acylceramide Levels in a Mouse Model of SjŶgren-Larsson Syndrome. Molecular and Cellular Biology, 2021, 41, e0035221.	2.3	4
142	Identification of residues important for the catalysis, structure maintenance, and substrate specificity of yeast 3â€hydroxyacyl oA dehydratase Phs1. FEBS Letters, 2013, 587, 804-809.	2.8	3
143	<i>N</i> -glycosylation of Rim21 at an Unconventional Site Fine-tunes Its Behavior in the Plasma Membrane. Cell Structure and Function, 2020, 45, 1-8.	1.1	3
144	Improvement of Evaporative Dry Eye With Meibomian Gland Dysfunction in Model Mice by Treatment With Ophthalmic Solution Containing Mineral Oil. Translational Vision Science and Technology, 2021, 10, 21.	2.2	3

Ακίο Κιμάγα

#	Article	IF	CITATIONS
145	Loop 5 region is important for the activity of the long-chain base transporter Rsb1. Journal of Biochemistry, 2016, 161, mvw059.	1.7	2
146	Proteinâ€bound ceramide levels in the epidermis of transglutaminase 1â€deficient mice. Journal of Dermatology, 2021, 48, 1799-1801.	1.2	2
147	Synthesis, Metabolism, and Trans-Bilayer Movement of Long-Chain Base. , 2006, , 95-106.		1
148	Phosphoenolpyruvate carboxylase: Alteration of catalytic and regulatory properties by site-directed mutagenesis and isolation of the gene from an extreme thermophile. Energy Conversion and Management, 1995, 36, 751-754.	9.2	0
149	Intracellular Stability of \hat{I}_{\pm} Fragments of \hat{I}^2 -Galactosidase: Effects of Amino-Terminally Fused Polypeptides. Biochemical and Biophysical Research Communications, 1996, 227, 642.	2.1	Ο
150	Synthesis of very long-chain fatty acid and its relationship to sphingolipid metabolism. Chemistry and Physics of Lipids, 2009, 160, S10-S11.	3.2	0
151	The fatty aldehyde dehydrogenase ALDH3A2 is involved in the sphingosine 1-phosphate metabolic pathway. Chemistry and Physics of Lipids, 2011, 164, S32.	3.2	0
152	Sphingolipid Metabolism via Sphingosine 1-Phosphate and Its Role in Physiology, Pathology, and Nutrition. , 2015, , 127-138.		0
153	Title is missing!. Kagaku To Seibutsu, 2016, 54, 75-76.	0.0	0
154	Metabolism of long-chain bases of sphingolipids and fatty acid α-oxidation. Plant Morphology, 2018, 30, 5-14.	0.1	0