Tamir Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4254882/publications.pdf

Version: 2024-02-01

126907 82547 6,625 75 33 72 h-index citations g-index papers 81 81 81 8959 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Meta-analysis Reveals Different Competition Effects on Tree Growth Resistance and Resilience to Drought. Ecosystems, 2022, 25, 30-43.	3.4	40
2	The effect of elevated CO2 on aboveground and belowground carbon allocation and eco-physiology of four species of angiosperm and gymnosperm forest trees. Tree Physiology, 2022, 42, 831-847.	3.1	8
3	Physiological drought resistance mechanisms in wild species vs. rootstocks of almond and plum. Trees - Structure and Function, 2022, 36, 669-683.	1.9	7
4	A hidden mechanism of forest loss under climate change: The role of drought in eliminating forest regeneration at the edge of its distribution. Forest Ecology and Management, 2022, 506, 119966.	3.2	15
5	Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME Journal, 2022, 16, 1420-1429.	9.8	20
6	Conifer desiccation in the 2021 NW heatwave confirms the role of hydraulic damage. Tree Physiology, 2022, 42, 722-726.	3.1	11
7	Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 2022, 3, 294-308.	29.7	163
8	Interannual adjustments in stomatal and leaf morphological traits of European beech (<i>Fagus) Tj ETQq0 0 0 rg 1287-1296.</i>	gBT /Overlo 3.8	ock 10 Tf 50 4 19
9	Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. Nature Communications, 2022, 13, 1761.	12.8	171
10	Asymmetric belowground carbon transfer in a diverse tree community. Molecular Ecology, 2022, 31, 3481-3495.	3.9	9
11	<i>In situ</i> , direct observation of seasonal embolism dynamics in Aleppo pine trees growing on the dry edge of their distribution. New Phytologist, 2022, 235, 1344-1350.	7.3	9
12	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
13	Higher risk for six endemic and endangered Lagochilus species in Central Asia under drying climate. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 48, 125586.	2.7	3
14	Unexpectedly low δ 13C in leaves, branches, stems and roots of three acacia species growing in hyper-arid environments. Journal of Plant Ecology, 2021, 14, 117-131.	2.3	0
15	Tree Forensics: Modern DNA barcoding and traditional anatomy identify roots threatening an ancient necropolis. Plants People Planet, 2021, 3, 211-219.	3.3	2
16	Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stressâ€specific beta amylases. New Phytologist, 2021, 229, 1398-1414.	7.3	25
17	Interspecific Soil Water Partitioning as a Driver of Increased Productivity in a Diverse Mixed Mediterranean Forest. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006382.	3.0	13
18	Carbon allocation dynamics in conifers and broadleaved tree species revealed by pulse labeling and mass balance. Forest Ecology and Management, 2021, 493, 119258.	3.2	18

#	Article	IF	Citations
19	Rapid stomatal response in lemon saves trees and their fruit yields under summer desiccation, but fails under recurring droughts. Agricultural and Forest Meteorology, 2021, 307, 108487.	4.8	9
20	Mitigating negative effects of long-term treated wastewater irrigation: Leaf gas exchange and water use efficiency response of avocado trees (Persea americana Mill.). Agricultural Water Management, 2021, 256, 107126.	5.6	3
21	A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sustainable Cities and Society, 2021, 73, 103098.	10.4	35
22	Carbon Allocation Dynamics in Mediterranean Pines Under Stress. Managing Forest Ecosystems, 2021, , $117\text{-}128$.	0.9	0
23	Intraspecific plasticity in hydraulic and stomatal regulation under drought is linked to aridity at the seed source in a wild pear species. Tree Physiology, 2021, 41, 960-973.	3.1	10
24	A race to the unknown: Contemporary research on tree and forest drought resistance, an Israeli perspective. Journal of Arid Environments, 2020, 172, 104045.	2.4	9
25	Exposing the hidden half: root research at the forefront of science. Plant and Soil, 2020, 447, 1-5.	3.7	6
26	Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist, 2020, 226, 1622-1637.	7.3	95
27	Drought tolerance of wild versus cultivated tree species of almond and plum in the field. Tree Physiology, 2020, 40, 454-466.	3.1	9
28	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
29	Tree rings reveal the adverse effect of water pumping on protected riparian Platanus orientalis tree growth. Forest Ecology and Management, 2020, 458, 117784.	3.2	7
30	Physiological effects of mature tree transplanting characterize the roles of the soil-root interface in the field. Agricultural and Forest Meteorology, 2020, 295, 108192.	4.8	2
31	Enhanced root exudation of mature broadleaf and conifer trees in a Mediterranean forest during the dry season. Tree Physiology, 2020, 40, 1595-1605.	3.1	26
32	Editorial: Plant-Soil Interactions Under Changing Climate. Frontiers in Plant Science, 2020, 11, 621235.	3.6	3
33	Intraspecific responses to climate reveal nonintuitive warming impacts on a widespread thermophilic conifer. New Phytologist, 2020, 228, 525-540.	7.3	24
34	Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 2020, 11, 545.	12.8	228
35	Share the wealth: Trees with greater ectomycorrhizal species overlap share more carbon. Molecular Ecology, 2020, 29, 2321-2333.	3.9	42
36	Drought tolerance mechanisms and aquaporin expression of wild vs. cultivated pear tree species in the field. Environmental and Experimental Botany, 2019, 167, 103832.	4.2	19

#	Article	IF	Citations
37	Stand density effects on carbon and water fluxes in a semi-arid forest, from leaf to stand-scale. Forest Ecology and Management, 2019, 453, 117573.	3.2	50
38	Increased Nitrogen Availability in the Soil Under Mature Picea abies Trees Exposed to Elevated CO2 Concentrations. Frontiers in Forests and Global Change, 2019, 2, .	2.3	14
39	Stomatal sensitivity to CO ₂ diverges between angiosperm and gymnosperm tree species. Functional Ecology, 2019, 33, 1411-1424.	3.6	31
40	Use of thermal imaging to detect evaporative cooling in coniferous and broadleaved tree species of the Mediterranean maquis. Agricultural and Forest Meteorology, 2019, 271, 285-294.	4.8	42
41	Mortality versus survival in droughtâ€affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Functional Ecology, 2019, 33, 901-912.	3.6	48
42	A nation-wide analysis of tree mortality under climate change: Forest loss and its causes in Israel 1948–2017. Forest Ecology and Management, 2019, 432, 840-849.	3.2	41
43	Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environmental and Experimental Botany, 2018, 148, 117-127.	4.2	33
44	Xylem embolism refilling and resilience against droughtâ€induced mortality in woody plants: processes and tradeâ€offs. Ecological Research, 2018, 33, 839-855.	1.5	116
45	Climate change drives tree mortality. Science, 2018, 362, 758-758.	12.6	35
46	Ecotypic variation and stability in growth performance of the thermophilic conifer Pinus halepensis across the Mediterranean basin. Forest Ecology and Management, 2018, 424, 205-215.	3.2	37
47	Tree growth and water-use in hyper-arid Acacia occurs during the hottest and driest season. Oecologia, 2018, 188, 695-705.	2.0	23
48	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	3.6	117
49	Measuring the effect of plant-community composition on carbon fixation on green roofs. Urban Forestry and Urban Greening, 2017, 24, 1-4.	5.3	16
50	Ecosystem dynamics and management after forest dieâ€off: a global synthesis with conceptual stateâ€andâ€transition models. Ecosphere, 2017, 8, e02034.	2.2	56
51	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
52	Forest GPP Calculation Using Sap Flow and Water Use Efficiency Measurements. Bio-protocol, 2017, 7, e2221.	0.4	3
53	Growth and carbon relations of mature <i>Picea abies</i> trees under 5Âyears of freeâ€air CO ₂ enrichment. Journal of Ecology, 2016, 104, 1720-1733.	4.0	68
54	Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?. Plant, Cell and Environment, 2016, 39, 709-725.	5.7	164

#	Article	IF	CITATIONS
55	Resilience to seasonal heat wave episodes in a Mediterranean pine forest. New Phytologist, 2016, 210, 485-496.	7.3	74
56	Association between sap flowâ€derived and eddy covarianceâ€derived measurements of forest canopy <scp>CO</scp> ₂ uptake. New Phytologist, 2016, 209, 436-446.	7.3	29
57	Belowground carbon trade among tall trees in a temperate forest. Science, 2016, 352, 342-344.	12.6	182
58	Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5024-5029.	7.1	554
59	Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiology, 2016, 36, 847-855.	3.1	76
60	The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13098-13103.	7.1	362
61	Diurnal dynamics of water transport, storage and hydraulic conductivity in pine trees under seasonal drought. IForest, 2016, 9, 710-719.	1.4	35
62	Water availability predicts forest canopy height at the globalÂscale. Ecology Letters, 2015, 18, 1311-1320.	6.4	87
63	Drought-induced tree mortality: from discrete observations to comprehensive research. Tree Physiology, 2015, 35, 225-228.	3.1	32
64	Tree carbon allocation dynamics determined using a carbon mass balance approach. New Phytologist, 2015, 205, 147-159.	7.3	82
65	Quantifying transpirable soil water and its relations to tree water use dynamics in a waterâ€imited pine forest. Ecohydrology, 2014, 7, 409-419.	2.4	69
66	Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree Physiology, 2014, 34, 981-992.	3.1	136
67	Towards an advanced assessment of the hydrological vulnerability of forests to climate changeâ€induced drought. New Phytologist, 2014, 201, 712-716.	7.3	76
68	The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 2014, 28, 1313-1320.	3.6	544
69	Knockdown of the <i><scp>A</scp>rabidopsis thaliana</i> chloroplast protein disulfide isomerase 6 results in reduced levels of photoinhibition and increased <scp>D</scp> 1 synthesis in high light. Plant Journal, 2014, 78, 1003-1013.	5.7	45
70	Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species. Forest Ecology and Management, 2013, 302, 34-42.	3.2	105
71	A plant's perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology, 2013, 19, 75-89.	9.5	393
72	Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiology, 2013, 33, 26-36.	3.1	102

TAMIR KLEIN

#	Article	IF	CITATIONS
73	Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiology, 2011, 31, 637-648.	3.1	136
74	Association between tree-ring and needle $\hat{l}'13C$ and leaf gas exchange in Pinus halepensis under semi-arid conditions. Oecologia, 2005, 144, 45-54.	2.0	91
75	A montane species treeline is defined by both temperature and drought effects on growth season length. Tree Physiology, 0, , .	3.1	1