
Saobo Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4254446/publications.pdf Version: 2024-02-01

SAOROLEI

#	Article	IF	CITATIONS
1	TRPM2 Promotes Neurotoxin MPP+/MPTP-Induced Cell Death. Molecular Neurobiology, 2018, 55, 409-420.	4.0	72
2	Inhibition of L-Type Ca ²⁺ Channels by TRPC1-STIM1 Complex Is Essential for the Protection of Dopaminergic Neurons. Journal of Neuroscience, 2017, 37, 3364-3377.	3.6	69
3	Adrenergic Facilitation of GABAergic Transmission in Rat Entorhinal Cortex. Journal of Neurophysiology, 2007, 98, 2868-2877.	1.8	55
4	Activation of Neurotensin Receptor 1 Facilitates Neuronal Excitability and Spatial Learning and Memory in the Entorhinal Cortex: Beneficial Actions in an Alzheimer's Disease Model. Journal of Neuroscience, 2014, 34, 7027-7042.	3.6	45
5	Dopaminergic Modulation of GABAergic Transmission in the Entorhinal Cortex: Concerted Roles of Â1 Adrenoreceptors, Inward Rectifier K+, and T-Type Ca2+ Channels. Cerebral Cortex, 2014, 24, 3195-3208.	2.9	33
6	Requirement of phospholipase C and protein kinase C in cholecystokininâ€mediated facilitation of NMDA channel function and anxietyâ€like behavior. Hippocampus, 2012, 22, 1438-1450.	1.9	23
7	Cross interaction of dopaminergic and adrenergic systems in neural modulation. International Journal of Physiology, Pathophysiology and Pharmacology, 2014, 6, 137-42.	0.8	23
8	Oxytocin receptors excite lateral nucleus of central amygdala by phospholipase Cβ―and protein kinase Câ€dependent depression of inwardly rectifying K ⁺ channels. Journal of Physiology, 2020, 598, 3501-3520.	2.9	18
9	Somatostatin depresses the excitability of subicular bursting cells: Roles of inward rectifier K ⁺ channels, KCNQ channels and Epac. Hippocampus, 2017, 27, 971-984.	1.9	17
10	Neurotensinergic augmentation of glutamate release at the perforant path-granule cell synapse in rat dentate gyrus: Roles of L-Type Ca2+ channels, calmodulin and myosin light-chain kinase. Neuropharmacology, 2015, 95, 252-260.	4.1	15
11	Serotonergic modulation of Neural activities in the entorhinal cortex. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 201-10.	0.8	14
12	Depression of neuronal excitability and epileptic activities by group II metabotropic glutamate receptors in the medial entorhinal cortex. Hippocampus, 2015, 25, 1299-1313.	1.9	13
13	Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H 1 and H 2 receptors, Na + â€permeable cation channels, and inward rectifier K + channels. Hippocampus, 2017, 27, 613-631.	1.9	11
14	Roles of K+ and cation channels in ORL-1 receptor-mediated depression of neuronal excitability and epileptic activities in the medial entorhinal cortex. Neuropharmacology, 2019, 151, 144-158.	4.1	10
15	Neurotensinergic Excitation of Dentate Gyrus Granule Cells via Gα _q -Coupled Inhibition of TASK-3 Channels. Cerebral Cortex, 2016, 26, 977-990.	2.9	9
16	Activation of Oxytocin Receptors Excites Subicular Neurons by Multiple Signaling and Ionic Mechanisms. Cerebral Cortex, 2021, 31, 2402-2415.	2.9	6
17	Involvement of TRPC5 channels, inwardly rectifying K ⁺ channels, PLCβ and PIP ₂ in vasopressinâ€mediated excitation of medial central amygdala neurons. Journal of Physiology, 2021, 599, 3101-3119.	2.9	6
18	Roles of PLCβ, PIP 2 , and GIRK channels in arginine vasopressinâ€elicited excitation of CA1 pyramidal neurons. Journal of Cellular Physiology, 2021, , .	4.1	4

SAOBO LEI

#	Article	IF	CITATIONS
19	A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings. MethodsX, 2017, 4, 360-371.	1.6	2
20	Activation of V1a vasopressin receptors excite subicular pyramidal neurons by activating TRPV1 and depressing GIRK channels. Neuropharmacology, 2021, 190, 108565.	4.1	2
21	Ionic and signaling mechanisms involved in neurotensin-mediated excitation of central amygdala neurons. Neuropharmacology, 2021, 196, 108714.	4.1	1