Brian P Lazzaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4254009/publications.pdf

Version: 2024-02-01

82 8,332 41 80 papers citations h-index 93 93 8978

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	A robust method to isolate <i>Drosophila</i> fat body nuclei for transcriptomic analysis. Fly, 2022, 16, 62-67.	1.7	5
2	Balancing sensitivity, risk, and immunopathology in immune regulation. Current Opinion in Insect Science, 2022, 50, 100874.	4.4	11
3	Inherent constraints on a polyfunctional tissue lead to a reproduction-immunity tradeoff. BMC Biology, 2022, 20, .	3.8	13
4	A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. Journal of Insect Physiology, 2022, 140, 104414.	2.0	7
5	Host–pathogen immune feedbacks can explain widely divergent outcomes from similar infections. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210786.	2.6	16
6	Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. ELife, 2021, 10, .	6.0	66
7	The molecular architecture of <i>Drosophila melanogaster</i> defense against <i>Beauveria bassiana</i> explored through evolve and resequence and quantitative trait locus mapping. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	10
8	<i>Drosophila</i> Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 2021, 38, 5782-5805.	8.9	37
9	Characterization of Insect Immune Systems from Genomic Data. Springer Protocols, 2020, , 3-34.	0.3	4
10	Antimicrobial peptides: Application informed by evolution. Science, 2020, 368, .	12.6	553
	Antimicrobial peptides: Application informed by evolution. Science, 2020, 368, . Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS ONE, 2019, 14, e0224440.	12.6 2.5	553 34
10	Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS ONE, 2019, 14,		
10	Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS ONE, 2019, 14, e0224440. Nephrocytes Remove Microbiota-Derived Peptidoglycan from Systemic Circulation to Maintain Immune	2.5	34
10 11 12	Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS ONE, 2019, 14, e0224440. Nephrocytes Remove Microbiota-Derived Peptidoglycan from Systemic Circulation to Maintain Immune Homeostasis. Immunity, 2019, 51, 625-637.e3.	2.5	34
10 11 12 13	Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS ONE, 2019, 14, e0224440. Nephrocytes Remove Microbiota-Derived Peptidoglycan from Systemic Circulation to Maintain Immune Homeostasis. Immunity, 2019, 51, 625-637.e3. Sperm success and immunity. Current Topics in Developmental Biology, 2019, 135, 287-313. Persistence of an extracellular systemic infection across metamorphosis in a holometabolous insect.	2.5 14.3 2.2	34 39 47
10 11 12 13	Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS ONE, 2019, 14, e0224440. Nephrocytes Remove Microbiota-Derived Peptidoglycan from Systemic Circulation to Maintain Immune Homeostasis. Immunity, 2019, 51, 625-637.e3. Sperm success and immunity. Current Topics in Developmental Biology, 2019, 135, 287-313. Persistence of an extracellular systemic infection across metamorphosis in a holometabolous insect. Biology Letters, 2018, 14, 20170771. Rapid seasonal evolution in innate immunity of wild <i>Drosophila melanogaster</i>	2.5 14.3 2.2 2.3	34 39 47 14
10 11 12 13 14	Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS ONE, 2019, 14, e0224440. Nephrocytes Remove Microbiota-Derived Peptidoglycan from Systemic Circulation to Maintain Immune Homeostasis. Immunity, 2019, 51, 625-637.e3. Sperm success and immunity. Current Topics in Developmental Biology, 2019, 135, 287-313. Persistence of an extracellular systemic infection across metamorphosis in a holometabolous insect. Biology Letters, 2018, 14, 20170771. Rapid seasonal evolution in innate immunity of wild⟨i⟩Drosophila melanogaster⟨/i⟩. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172599. Detecting Adaptation with Genome-Scale Molecular Evolutionary Analysis: An Educational Primer for Use with "RNA Interference Pathways Display High Rates of Adaptive Protein Evolution in Multiple	2.5 14.3 2.2 2.3	34 39 47 14 82

#	Article	IF	CITATIONS
19	Rapid expansion of immune-related gene families in the house fly, <i>Musca domestica </i> Biology and Evolution, 2017, 34, msw285.	8.9	35
20	The genetic architecture of defence as resistance to and tolerance of bacterial infection in <i>Drosophila melanogaster</i> . Molecular Ecology, 2017, 26, 1533-1546.	3.9	49
21	Juvenile Hormone Suppresses Resistance to Infection in Mated Female Drosophila melanogaster. Current Biology, 2017, 27, 596-601.	3.9	85
22	Host–Microbe Interactions: Winning the Colonization Lottery. Current Biology, 2017, 27, R642-R644.	3.9	4
23	Balancing selection for aflatoxin in <i>Aspergillus flavus</i> is maintained through interference competition with, and fungivory by insects. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172408.	2.6	54
24	Stochastic variation in the initial phase of bacterial infection predicts the probability of survival in D. melanogaster. ELife, 2017, 6, .	6.0	134
25	The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila. BMC Biology, 2017, 15, 124.	3.8	70
26	Evolution of <scp>GOUNDRY</scp> , a cryptic subgroup of <i>AnophelesÂgambiaeÂs.l</i> , and its impact on susceptibility to <i>Plasmodium</i> infection. Molecular Ecology, 2016, 25, 1494-1510.	3.9	18
27	The potential for adaptive maintenance of diversity in insect antimicrobial peptides. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150291.	4.0	60
28	Convergent Balancing Selection on an Antimicrobial Peptide in Drosophila. Current Biology, 2016, 26, 257-262.	3.9	99
29	Reproduction–Immunity Trade-Offs in Insects. Annual Review of Entomology, 2016, 61, 239-256.	11.8	407
30	Systemic Bacterial Infection and Immune Defense Phenotypes in Drosophila Melanogaster . Journal of Visualized Experiments, 2015, , e52613.	0.3	46
31	Reticulate Speciation and Barriers to Introgression in the <i>Anopheles gambiae </i> Species Complex. Genome Biology and Evolution, 2015, 7, 3116-3131.	2.5	32
32	Population Genetics of <i> Anopheles coluzzii < /i > Immune Pathways and Genes. G3: Genes, Genomes, Genetics, 2015, 5, 329-339.</i>	1.8	10
33	A Genome-Wide Association Study for Nutritional Indices in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2015, 5, 417-425.	1.8	41
34	Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nature Communications, 2015, 6, 6312.	12.8	100
35	The Complex Contributions of Genetics and Nutrition to Immunity in Drosophila melanogaster. PLoS Genetics, 2015, 11, e1005030.	3.5	93
36	Adenosine Signaling and the Energetic Costs of Induced Immunity. PLoS Biology, 2015, 13, e1002136.	5.6	7

#	Article	IF	CITATIONS
37	The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster. PLoS Biology, 2015, 13, e1002210.	5 . 6	272
38	Thorax Injury Lowers Resistance to Infection in Drosophila melanogaster. Infection and Immunity, 2014, 82, 4380-4389.	2.2	34
39	The Genetics of Immunity. Genetics, 2014, 197, 467-470.	2.9	5
40	Genotype and diet shape resistance and tolerance across distinct phases of bacterial infection. BMC Evolutionary Biology, 2014, 14, 56.	3.2	118
41	The Genetics of Immunity. G3: Genes, Genomes, Genetics, 2014, 4, 943-945.	1.8	4
42	No evidence for positive selection at two potential targets for malaria transmission-blocking vaccines in Anopheles gambiae s.s. Infection, Genetics and Evolution, 2013, 16, 87-92.	2.3	3
43	Dietary plant phenolic improves survival of bacterial infection in <i><scp>M</scp>anduca sexta</i> caterpillars. Entomologia Experimentalis Et Applicata, 2013, 146, 321-331.	1.4	21
44	Reproductive Status Alters Transcriptomic Response to Infection in Female < i>Drosophila melanogaster < /i>. G3: Genes, Genomes, Genetics, 2013, 3, 827-840.	1.8	53
45	Evidence for Population-Specific Positive Selection on Immune Genes of <i>Anopheles gambiae </i> Genes, Genomes, Genetics, 2012, 2, 1505-1519.	1.8	18
46	Female Drosophila melanogaster suffer reduced defense against infection due to seminal fluid components. Journal of Insect Physiology, 2012, 58, 1192-1201.	2.0	87
47	Comparative genomics of bacteria in the genus Providencia isolated from wild Drosophila melanogaster. BMC Genomics, 2012, 13, 612.	2.8	32
48	No Effect of Wolbachia on Resistance to Intracellular Infection by Pathogenic Bacteria in Drosophila melanogaster. PLoS ONE, 2012, 7, e40500.	2.5	36
49	Assessing the Accuracy and Power of Population Genetic Inference from Low-Pass Next-Generation Sequencing Data. Frontiers in Genetics, 2012, 3, 66.	2.3	47
50	Potential for evolutionary coupling and decoupling of larval and adult immune gene expression. Molecular Ecology, 2011, 20, 1558-1567.	3.9	45
51	Danger, Microbes, and Homeostasis. Science, 2011, 332, 43-44.	12.6	77
52	Comparative pathology of bacteria in the genus Providencia to a natural host, Drosophila melanogaster. Microbes and Infection, 2011, 13, 673-683.	1.9	127
53	Exceptional Diversity, Maintenance of Polymorphism, and Recent Directional Selection on the APL1 Malaria Resistance Genes of Anopheles gambiae. PLoS Biology, 2011, 9, e1000600.	5. 6	68
54	The costs of immunity and the evolution of immunological defense mechanisms. , 2011, , 299-310.		37

#	Article	lF	CITATIONS
55	Larval food quality affects adult (but not larval) immune gene expression independent of effects on general condition. Molecular Ecology, 2010, 19, 1462-1468.	3.9	67
56	De Novo Transcriptome Sequencing in Anopheles funestus Using Illumina RNA-Seq Technology. PLoS ONE, 2010, 5, e14202.	2.5	132
57	Female and male genetic contributions to post-mating immune defence in female <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3649-3657.	2.6	70
58	The Demographic Histories of the M and S Molecular Forms of Anopheles gambiae s.s Molecular Biology and Evolution, 2010, 27, 1739-1744.	8.9	20
59	Haplotype Structure and Expression Divergence at the Drosophila Cellular Immune Gene eater. Molecular Biology and Evolution, 2010, 27, 2284-2299.	8.9	15
60	Genotype and Gene Expression Associations with Immune Function in Drosophila. PLoS Genetics, 2010, 6, e1000797.	3.5	57
61	Immunity in a variable world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 15-26.	4.0	315
62	The effect of three environmental conditions on the fitness of cytochrome P450 monooxygenase-mediated permethrin resistance in Culex pipiens quinquefasciatus. BMC Evolutionary Biology, 2009, 9, 42.	3.2	117
63	Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1108-1111.	1.7	136
64	The evolutionary costs of immunological maintenance and deployment. BMC Evolutionary Biology, 2008, 8, 76.	3.2	181
65	Natural selection on the Drosophila antimicrobial immune system. Current Opinion in Microbiology, 2008, 11, 284-289.	5.1	113
66	Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster. PLoS Pathogens, 2008, 4, e1000025.	4.7	106
67	Anopheles gambiae APL1 Is a Family of Variable LRR Proteins Required for Rel1-Mediated Protection from the Malaria Parasite, Plasmodium berghei. PLoS ONE, 2008, 3, e3672.	2.5	83
68	Dynamic evolution of the innate immune system in Drosophila. Nature Genetics, 2007, 39, 1461-1468.	21.4	400
69	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
70	Genetic Variation in Drosophila melanogaster Resistance to Infection: A Comparison Across Bacteria. Genetics, 2006, 174, 1539-1554.	2.9	120
71	Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from the eastern United States. Insect Molecular Biology, 2006, 15, 157-167.	2.0	78
72	Disease Pathology: Wasting Energy Fighting Infection. Current Biology, 2006, 16, R964-R965.	3.9	13

#	Article	IF	CITATIONS
73	DNA Sequence Polymorphism and Divergence at the erect wing and suppressor of sable Loci of Drosophila melanogaster and D. simulans. Genetics, 2005, 170, 1153-1165.	2.9	14
74	Elevated Polymorphism and Divergence in the Class C Scavenger Receptors of Drosophila melanogaster and D. simulansSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY865019, AY865135 Genetics, 2005, 169, 2023-2034.	2.9	58
75	Genetic Basis of Natural Variation in D. melanogaster Antibacterial Immunity. Science, 2004, 303, 1873-1876.	12.6	230
76	Molecular Population Genetics of Inducible Antibacterial Peptide Genes in Drosophila melanogaster. Molecular Biology and Evolution, 2003, 20, 914-923.	8.9	83
77	fRFLP and fAFLP: Medium-Throughput Genotyping by Fluorescently Post-Labeling Restriction Digestion. BioTechniques, 2002, 33, 539-546.	1.8	8
78	fRFLP and fAFLP: Medium-Throughput Genotyping by Fluorescently Post-Labeling Restriction Digestion. BioTechniques, 2002, 33, 539-546.	1.8	0
79	Evidence for Recurrent Paralogous Gene Conversion and Exceptional Allelic Divergence in the <i>Attacin</i> Genes of <i>Drosophila melanogaster</i> Genetics, 2001, 159, 659-671.	2.9	69
80	Contrasting Patterns of Nucleotide Polymorphism at the Alcohol Dehydrogenase Locus in the Outcrossing Arabidopsis lyrata and the Selfing Arabidopsis thaliana. Molecular Biology and Evolution, 2000, 17, 645-655.	8.9	129
81	Y chromosomal fertility factors kl-2 and kl-3 of Drosophila melanogaster encode dynein heavy chain polypeptides. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13239-13244.	7.1	159
82	Linkage Disequilibria and the Site Frequency Spectra in the <i>su(s)</i> and <i>su(wa</i>) Regions of the <i>Drosophila melanogaster X</i> Chromosome. Genetics, 2000, 156, 1837-1852.	2.9	137