Julia R Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/425337/publications.pdf Version: 2024-02-01

LILLA P DAVIES

#	Article	IF	CITATIONS
1	ARTICULATE: A European glossary of terms used in oral health professional education. European Journal of Dental Education, 2023, 27, 209-222.	2.0	5
2	<scp>Oâ€Healthâ€Edu</scp> : A vision for oral health professional education in Europe. European Journal of Dental Education, 2023, 27, 382-387.	2.0	3
3	Oâ€HEALTHâ€EDU: A scoping review on the reporting of oral health professional education in Europe. European Journal of Dental Education, 2021, 25, 56-77.	2.0	10
4	Acid tolerance in early colonizers of oral biofilms. BMC Microbiology, 2021, 21, 45.	3.3	26
5	Exogenous LL-37 but not homogenates of desquamated oral epithelial cells shows activity against <i>Streptococcus mutans</i> . Acta Odontologica Scandinavica, 2021, 79, 466-472.	1.6	4
6	Bacterial colonization of a powerâ€driven water flosser during regular use. A proofâ€ofâ€principle study. Clinical and Experimental Dental Research, 2021, 7, 656-663.	1.9	5
7	Polymicrobial synergy stimulates Porphyromonas gingivalis survival and gingipain expression in a multi-species subgingival community. BMC Oral Health, 2021, 21, 639.	2.3	5
8	COVIDâ€19: The immediate response of european academic dental institutions and future implications for dental education. European Journal of Dental Education, 2020, 24, 811-814.	2.0	157
9	Modified lipoproteins in periodontitis: a link to cardiovascular disease?. Bioscience Reports, 2019, 39, .	2.4	21
10	A randomized, controlled, clinical study on a new titanium oxide abutment surface for improved healing and soft tissue health. Clinical Implant Dentistry and Related Research, 2019, 21, 55-68.	3.7	22
11	Streptococcus gordonii Type I Lipoteichoic Acid Contributes to Surface Protein Biogenesis. MSphere, 2019, 4, .	2.9	13
12	Parvimonas micra stimulates expression of gingipains from Porphyromonas gingivalis in multi-species communities. Anaerobe, 2019, 55, 54-60.	2.1	24
13	Titanium granules pre-treated with hydrogen peroxide inhibit growth of bacteria associated with post-operative infections in spine surgery. European Spine Journal, 2018, 27, 2463-2468.	2.2	12
14	Bactericidal effect of photocatalyticallyâ€active nanostructured TiO ₂ surfaces on biofilms of the early oral colonizer, <i>Streptococcus oralis</i> . Journal of Biomedical Materials Research - Part A, 2017, 105, 2321-2328.	4.0	10
15	Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Scientific Reports, 2017, 7, 8689.	3.3	70
16	Modeling the development of proteolytic phenotypes in multi-species oral biofilms. Journal of Oral Microbiology, 2017, 9, 1325274.	2.7	0
17	The Graduating European Dentist—Domain I: Professionalism. European Journal of Dental Education, 2017, 21, 11-13.	2.0	19
18	The Graduating European Dentist—Domain <scp>III</scp> : Patient entred Care. European Journal of Dental Education, 2017, 21, 18-24.	2.0	27

JULIA R DAVIES

#	Article	IF	CITATIONS
19	The Graduating European Dentist: Contemporaneous Methods of Teaching, Learning and Assessment in Dental Undergraduate Education. European Journal of Dental Education, 2017, 21, 28-35.	2.0	38
20	Acid tolerance properties of dental biofilms in vivo. BMC Microbiology, 2017, 17, 165.	3.3	29
21	Modulation of the nanometer pore size improves magnesium adsorption into mesoporous titania coatings and promotes bone morphogenic protein 4 expression in adhering osteoblasts. Dental Materials, 2016, 32, e148-e158.	3.5	6
22	Strains of <i>Enterococcus faecalis</i> differ in their ability to coexist in biofilms with other root canal bacteria. International Endodontic Journal, 2015, 48, 916-925.	5.0	25
23	Bacterial profiles and proteolytic activity in peri-implantitis versus healthy sites. Anaerobe, 2015, 35, 28-34.	2.1	23
24	Effect of Fluoride and Chlorhexidine Digluconate Mouthrinses on Plaque Biofilms. Open Dentistry Journal, 2015, 9, 106-111.	0.5	14
25	Crystalline anatase-rich titanium can reduce adherence of oral streptococci. Biofouling, 2014, 30, 751-759.	2.2	25
26	The effect of delmopinol and fluoride on acid adaptation and acid production in dental plaque biofilms. Archives of Oral Biology, 2014, 59, 318-323.	1.8	11
27	Effects of bacterial products on the activity of odontoblastâ€like cells and their formation of type 1 collagen. International Endodontic Journal, 2014, 47, 397-404.	5.0	6
28	Role for the A Domain of Unprocessed Accumulation-Associated Protein (Aap) in the Attachment Phase of the Staphylococcus epidermidis Biofilm Phenotype. Journal of Bacteriology, 2014, 196, 4268-4275.	2.2	49
29	Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces. BMC Oral Health, 2014, 14, 75.	2.3	41
30	Surface-associated MUC5B mucins promote protease activity in Lactobacillus fermentum biofilms. BMC Oral Health, 2013, 13, 43.	2.3	18
31	Salivary pellicles on titanium and their effect on metabolic activity in Streptococcus oralis. BMC Oral Health, 2013, 13, 32.	2.3	17
32	Biofilm formation by <i>Staphylococcus epidermidis</i> on peritoneal dialysis catheters and the effects of extracellular products from <i>Pseudomonas aeruginosa</i> . Pathogens and Disease, 2013, 67, 192-198.	2.0	17
33	Bacteria on Catheters in Patients Undergoing Peritoneal Dialysis. Peritoneal Dialysis International, 2013, 33, 51-59.	2.3	23
34	Structural and Functional Analysis of the N-terminal Domain of the Streptococcus gordonii Adhesin Sgo0707. PLoS ONE, 2013, 8, e63768.	2.5	11
35	Salivary proteins promote proteolytic activity in <i>Streptococcus mitis</i> biovar 2 and <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2012, 27, 362-372.	2.7	21
36	Effects of saliva or serum coating on adherence of Streptococcus oralis strains to titanium. Microbiology (United Kingdom), 2012, 158, 390-397.	1.8	36

JULIA R DAVIES

#	Article	IF	CITATIONS
37	Gel-Forming and Cell-Associated Mucins: Preparation for Structural and Functional Studies. Methods in Molecular Biology, 2012, 842, 27-47.	0.9	23
38	<i>In situ</i> analysis of multispecies biofilm formation on customized titanium surfaces. Molecular Oral Microbiology, 2011, 26, 241-252.	2.7	60
39	Dentine sialoprotein and Collagen I expression after experimental pulp capping in humans using Emdogain®Gel. International Endodontic Journal, 2011, 44, 259-267.	5.0	21
40	Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation. BMC Oral Health, 2011, 11, 8.	2.3	55
41	Differential effects of <i>Pseudomonas aeruginosa</i> on biofilm formation by different strains of <i>Staphylococcus epidermidis</i> . FEMS Immunology and Medical Microbiology, 2010, 59, 439-446.	2.7	28
42	Effects of clinical isolates of <i>Pseudomonas aeruginosa</i> on <i>Staphylococcus epidermidis</i> biofilm formation. FEMS Immunology and Medical Microbiology, 2010, 59, 504-512.	2.7	28
43	Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology (United Kingdom), 2009, 155, 1977-1988.	1.8	40
44	Respiratory Tract Mucins: Structure and Expression Patterns. Novartis Foundation Symposium, 2008, , 76-93.	1.1	48
45	MUC16 is produced in tracheal surface epithelium and submucosal glands and is present in secretions from normal human airway and cultured bronchial epithelial cells. International Journal of Biochemistry and Cell Biology, 2007, 39, 1943-1954.	2.8	78
46	PFG-NMR diffusometry: A tool for investigating the structure and dynamics of noncommercial purified pig gastric mucin in a wide range of concentrations. Biopolymers, 2007, 86, 165-175.	2.4	28
47	Dental pulp capping: effect of Emdogain Gel on experimentally exposed human pulps. International Endodontic Journal, 2005, 38, 186-194.	5.0	52
48	Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. Biochemical Journal, 2002, 364, 191-200.	3.7	118
49	Respiratory tract mucins: structure and expression patterns. Novartis Foundation Symposium, 2002, 248, 76-88; discussion 88-93, 277-82.	1.1	17
50	Mucin biosynthesis and secretion in tracheal epithelial cells in primary culture. Biochemical Journal, 2001, 353, 23-32.	3.7	12
51	Distribution of iodine 125–labeled α1-microglobulin in rats after intravenous injection. Translational Research, 2001, 137, 165-175.	2.3	46
52	Identification of a nonmucin glycoprotein (gp-340) from a purified respiratory mucin preparation: evidence for an association involving the MUC5B mucin. Glycobiology, 2001, 11, 969-977.	2.5	51
53	Macromolecular organization of saliva: identification of â€~insoluble' MUC5B assemblies and non-mucin proteins in the gel phase. Biochemical Journal, 2000, 351, 421.	3.7	37
54	Mucin biosynthesis and secretion in tracheal epithelial cells in primary culture. Biochemical Journal, 2000, 353, 23.	3.7	3

JULIA R DAVIES

#	Article	IF	CITATIONS
55	Macromolecular organization of saliva: identification of â€~insoluble' MUC5B assemblies and non-mucin proteins in the gel phase. Biochemical Journal, 2000, 351, 421-428.	3.7	82
56	Studies on the "Insoluble―Glycoprotein Complex from Human Colon. Journal of Biological Chemistry, 1999, 274, 15828-15836.	3.4	135
57	pH-dependent binding ofHelicobacter pylorito pig gastric mucins. FEMS Immunology and Medical Microbiology, 1999, 24, 175-181.	2.7	11
58	Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions. Biochemical Journal, 1999, 344, 321-330.	3.7	104
59	Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions. Biochemical Journal, 1999, 344, 321.	3.7	45
60	Mucus glycoproteins from pig gastric mucosa: different mucins are produced by the surface epithelium and the glands. Biochemical Journal, 1998, 331, 687-694.	3.7	23
61	Biosynthesis of mucins in bovine trachea: identification of the major radiolabelled species. Biochemical Journal, 1998, 333, 449-456.	3.7	13
62	MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochemical Journal, 1998, 334, 685-693.	3.7	301
63	Mucus glycoproteins in bovine trachea: identification of the major mucin populations in respiratory secretions and investigation of their tissue origins. Biochemical Journal, 1997, 321, 117-124.	3.7	9
64	Mucus glycoproteins from pig gastric mucosa: identification of different mucin populations from the surface epithelium. Biochemical Journal, 1997, 326, 903-910.	3.7	57
65	Glycoconjugates facing the outside world. Biochemical Society Transactions, 1997, 25, 214-219.	3.4	51
66	Structure and Biochemistry of Human Respiratory Mucins. , 1997, , 19-39.		4
67	Mucins in airway secretions from healthy and chronic bronchitic subjects. Biochemical Journal, 1996, 313, 431-439.	3.7	64
68	Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochemical Journal, 1996, 318, 319-324.	3.7	278
69	MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconjugate Journal, 1996, 13, 839-847.	2.7	220
70	Aspects on the Interaction ofStreptococcus pneumoniaeandHaemophilus influenzaewith Human Respiratory Tract Mucosa. American Journal of Respiratory and Critical Care Medicine, 1996, 154, S187-S191.	5.6	41
71	â€~Soluble' and â€~insoluble' mucins — Identification of distinct populations. Biochemical Society Transactions, 1995, 23, 845-851.	3.4	63
72	Human gastric mucins - a major population identified as MUC5. Biochemical Society Transactions, 1995, 23, 533S-533S.	3.4	12

Julia R Davies

#	Article	IF	CITATIONS
73	Human tracheal mucins– is MUC5 more prominent in the epithelial surface than in the submucosa?. Biochemical Society Transactions, 1995, 23, 534S-534S.	3.4	4
74	Binding of Haemophilus influenzae to purified mucins from the human respiratory tract. Infection and Immunity, 1995, 63, 2485-2492.	2.2	57
75	S20.10 Identification of three different populations of mucus glycoproteins from pig gastric mucosa. Glycoconjugate Journal, 1993, 10, 344-345.	2.7	0
76	S20.20 Bovine trachea as a model for mucin secretion in the airways. Glycoconjugate Journal, 1993, 10, 348-348.	2.7	0
77	Release of Mucus Glycoconjugates by <i>Pseudomonas aeruginosa</i> Rhamnolipids into Feline Trachea <i>In Vivo</i> and Human Bronchus <i>In Vitro</i> . American Journal of Respiratory Cell and Molecular Biology, 1992, 6, 116-122.	2.9	42
78	The uptake of radiolabelled precursors of mucus glycoconjugates by secretory tissues in the feline trachea Journal of Physiology, 1990, 420, 19-30.	2.9	18
79	The effect of tobacco smoke upon airway secretion in the cat. Clinical Science, 1986, 71, 179-187.	4.3	23
80	Characterization of core polypeptides of human bronchial mucins. Biochemical Society Transactions, 1986, 14, 114-115.	3.4	2
81	Streptococcus gordonii Poised for Glycan Feeding through a MUC5B-Discriminating, Lipoteichoic Acid-Mediated Outside-In Signaling Circuit, Journal of Bacteriology, O	2.2	2