
Jungil Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4252831/publications.pdf Version: 2024-02-01

LUNCH HONC

#	Article	IF	CITATIONS
1	Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. American Journal of Clinical Nutrition, 2005, 81, 284S-291S.	4.7	421
2	Modulation of arachidonic acid metabolism by curcumin and related Â-diketone derivatives: effects on cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis, 2004, 25, 1671-1679.	2.8	362
3	Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Research, 2002, 62, 7241-6.	0.9	304
4	Mechanism of Action of (â^)-Epigallocatechin-3-Gallate: Auto-oxidation–Dependent Inactivation of Epidermal Growth Factor Receptor and Direct Effects on Growth Inhibition in Human Esophageal Cancer KYSE 150 Cells. Cancer Research, 2005, 65, 8049-8056.	0.9	262
5	metabolism of arachidonic acid in human colon mucosa and colon tumor tissues11Abbreviations: COX, cyclooxygenase; LOX, lipoxygenase; EGCG, (-)-epigallocatechin-3-gallate; EGC, (-)-epigallocatechin; ECG, (-)-epicatechin; TF, theaflavin; TF3-G, theaflavin 3-gallate; TF3â€2-G, theaflavin 3â€2-gallate: TFdiG. theaflavin 3.3â€2-digallate: PGE2. prostaglandin E2: HETE. hydroxyeicosatetraenoic.	4.4	241
6	Biochemical Pharmacology, 2001, 62, 1175-1183. Glucuronides of Tea Catechins: Enzymology of Biosynthesis and Biological Activities. Drug Metabolism and Disposition, 2003, 31, 452-461.	3.3	220
7	Plasma and Tissue Levels of Tea Catechins in Rats and Mice During Chronic Consumption of Green Tea Polyphenols. Nutrition and Cancer, 2000, 37, 41-48.	2.0	216
8	Piperine Enhances the Bioavailability of the Tea Polyphenol (â^')-Epigallocatechin-3-gallate in Mice. Journal of Nutrition, 2004, 134, 1948-1952.	2.9	206
9	Inhibition of Intestinal Tumorigenesis in Apcmin/+ Mice by (â^')-Epigallocatechin-3-Gallate, the Major Catechin in Green Tea. Cancer Research, 2005, 65, 10623-10631.	0.9	202
10	Prevention of Chronic Diseases by Tea: Possible Mechanisms and Human Relevance. Annual Review of Nutrition, 2013, 33, 161-181.	10.1	181
11	Involvement of multidrug resistance-associated proteins in regulating cellular levels of (â^')-epigallocatechin-3-gallate and its methyl metabolites. Biochemical and Biophysical Research Communications, 2003, 310, 222-227.	2.1	174
12	Increased Growth Inhibitory Effects on Human Cancer Cells and Anti-inflammatory Potency of Shogaols from Zingiber officinale Relative to Gingerols. Journal of Agricultural and Food Chemistry, 2009, 57, 10645-10650.	5.2	152
13	Peracetylation as a Means of Enhancing in Vitro Bioactivity and Bioavailability of Epigallocatechin-3-Gallate. Drug Metabolism and Disposition, 2006, 34, 2111-2116.	3.3	147
14	DOSE-DEPENDENT LEVELS OF EPIGALLOCATECHIN-3-GALLATE IN HUMAN COLON CANCER CELLS AND MOUSE PLASMA AND TISSUES. Drug Metabolism and Disposition, 2006, 34, 8-11.	3.3	128
15	Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities. Bioorganic and Medicinal Chemistry, 2004, 12, 459-467.	3.0	125
16	Synthesis and biological activity of the tea catechin metabolites, M4 and M6 and their methoxy-derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 873-876.	2.2	94
17	Synthesis and Structure Identification of Thiol Conjugates of (â^')-Epigallocatechin Gallate and Their Urinary Levels in Mice. Chemical Research in Toxicology, 2005, 18, 1762-1769.	3.3	94
18	Modulation of arachidonic acid metabolism and nitric oxide synthesis by garcinol and its derivatives. Carcinogenesis, 2006, 27, 278-286.	2.8	90

Jungil Hong

#	Article	IF	CITATIONS
19	Effects of garcinol and its derivatives on intestinal cell growth: Inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radical Biology and Medicine, 2007, 42, 1211-1221.	2.9	76
20	Leukotriene A4 Hydrolase in Rat and Human Esophageal Adenocarcinomas and Inhibitory Effects of Bestatin. Journal of the National Cancer Institute, 2003, 95, 1053-1061.	6.3	74
21	Effects of Green Tea and High-Fat Diet on Arachidonic Acid Metabolism and Aberrant Crypt Foci Formation in an Azoxymethane-Induced Colon Carcinogenesis Mouse Model. Nutrition and Cancer, 2003, 46, 172-178.	2.0	65
22	Gene expression changes induced by green tea polyphenol (-)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray. Molecular Cancer Therapeutics, 2004, 3, 1091-9.	4.1	65
23	Anticancer and Anti-inflammatory Effects of Cysteine Metabolites of the Green Tea Polyphenol, (â°')-Epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 2010, 58, 10016-10019.	5.2	60
24	Effect of genistein on the bioavailability and intestinal cancer chemopreventive activity of (-)-epigallocatechin-3-gallate. Carcinogenesis, 2008, 29, 2019-2024.	2.8	58
25	Aberrant arachidonic acid metabolism in esophageal adenocarcinogenesis, and the effects of sulindac, nordihydroguaiaretic acid, and alpha-difluoromethylornithine on tumorigenesis in a rat surgical model. Carcinogenesis, 2002, 23, 2095-2102.	2.8	55
26	Wheat Bran Oil and Its Fractions Inhibit Human Colon Cancer Cell Growth and Intestinal Tumorigenesis inApcmin/+Mice. Journal of Agricultural and Food Chemistry, 2006, 54, 9792-9797.	5.2	41
27	Salivary hydrogen peroxide produced by holding or chewing green tea in the oral cavity. Free Radical Research, 2007, 41, 850-853.	3.3	37
28	Green Tea Polyphenols: Antioxidative and Prooxidative Effects. Journal of Nutrition, 2004, 134, 3181S.	2.9	35
29	Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Food Science and Biotechnology, 2013, 22, 279-282.	2.6	33
30	Antioxidant properties and cytotoxic effects of fractions from glasswort (Salicornia herbacea) seed extracts on human intestinal cells. Food Science and Biotechnology, 2011, 20, 115-122.	2.6	30
31	Application of the MTT-based colorimetric method for evaluating bacterial growth using different solvent systems. LWT - Food Science and Technology, 2022, 153, 112565.	5.2	30
32	Inhibitory Effects of Different Forms of Tocopherols, Tocopherol Phosphates, and Tocopherol Quinones on Growth of Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 8533-8540.	5.2	21
33	δâ€Tocopherol inhibits receptor tyrosine kinaseâ€induced AKT activation in prostate cancer cells. Molecular Carcinogenesis, 2016, 55, 1728-1738.	2.7	17
34	TMEM165, a Golgi transmembrane protein, is a novel marker for hepatocellular carcinoma and its depletion impairs invasion activity. Oncology Reports, 2018, 40, 1297-1306.	2.6	15
35	Parthenolide inhibits lipid accumulation via activation of Nrf2/Keap1 signaling during adipocyte differentiation. Food Science and Biotechnology, 2020, 29, 431-440.	2.6	13
36	Dibenzoylmethane Suppresses Lipid Accumulation and Reactive Oxygen Species Production through Regulation of Nuclear Factor (Erythroid-Derived 2)-Like 2 and Insulin Signaling in Adipocytes. Biological and Pharmaceutical Bulletin, 2018, 41, 680-689.	1.4	12

Jungil Hong

#	Article	IF	CITATIONS
37	Evaluation and comparison of functional properties of freshwater-cultivated glasswort (Salicornia) Tj ETQq1 1	0.784314 r 2.6	gBT_/Overloc
38	Optimization of Extraction of Cycloalliin from Garlic (Allium sativum L.) by Using Principal Components Analysis. Preventive Nutrition and Food Science, 2016, 21, 138-146.	1.6	8
39	Interaction of Over-the-Counter Drugs with Curcumin: Influence on Stability and Bioactivities in Intestinal Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 10578-10584.	5.2	7
40	Changes in the chemical properties and anti-oxidant activities of curcumin by microwave radiation. Food Science and Biotechnology, 2016, 25, 1449-1455.	2.6	7
41	Role of reactive oxygen species from the green tea catechin, (â^')-epigallocatechin-3-gallate in growth modulation of intestinal cells. Food Science and Biotechnology, 2015, 24, 1541-1548.	2.6	6
42	Dibenzoylmethane, a Component of Licorice, Suppresses Monocyte-to-Macrophage Differentiation and Inflammatory Responses in Human Monocytes and Mouse Macrophages. Biological and Pharmaceutical Bulletin, 2018, 41, 1228-1236.	1.4	6
43	Lysine is required for growth factor-induced mTORC1 activation. Biochemical and Biophysical Research Communications, 2020, 533, 945-951.	2.1	6
44	Inhibition of AKT Enhances the Sensitivity of NSCLC Cells to Metformin. Anticancer Research, 2021, 41, 3481-3487.	1.1	6
45	TRAIL restores DCA/metformin-mediated cell death in hypoxia. Biochemical and Biophysical Research Communications, 2016, 478, 1389-1395.	2.1	5
46	Biotransformation and Bioavailability of Tea Polyphenols: Implications for Cancer Prevention Research. ACS Symposium Series, 2005, , 212-224.	0.5	4
47	Analysis of chemical interactions of (â^')-epigallocatechin-3-gallate, a major green tea polyphenol, with commonly-consumed over-thecounter drugs. Food Science and Biotechnology, 2010, 19, 559-564.	2.6	4
48	Roles of anti- and pro-oxidant potential of cinnamic acid and phenylpropanoid derivatives in modulating growth of cultured cells. Food Science and Biotechnology, 2022, 31, 463-473.	2.6	4
49	Effects of Tea Polyphenols on Arachidonic Acid Metabolism in Human Colon. ACS Symposium Series, 2003, , 27-38.	0.5	3
50	Metagenomic, Metabolomic, and Functional Evaluation of Kimchi Broth Treated with Light-Emitting Diodes (LEDs). Metabolites, 2021, 11, 472.	2.9	3
51	Cellular uptake of anthocyanins extracted from black soybean, grape, and purple sweet potato using INT-407 cells. Food Science and Biotechnology, 2021, 30, 1383-1391.	2.6	3
52	Changes in chemical properties and bioactivities of turmeric pigments by photo-degradation. AIMS Agriculture and Food, 2021, 6, 754-767.	1.6	2
53	Antioxidant Properties and Protective Effects of Aerial Parts from <i>Cnidium officinale</i> Makino on Oxidative Stress-Induced Neuronal Cell Death. Preventive Nutrition and Food Science, 2021, 26, 200-208.	1.6	2
54	Modulation of the inflammatory process and interaction of THP-1 monocytes with intestinal epithelial cells by glasswort (Salicornia herbacea L.) extracts. Korean Journal of Food Science and Technology, 2016, 48, 378-383.	0.3	2

#	Article	IF	CITATIONS
55	Antioxidant activities, production of reactive oxygen species, and cytotoxic properties of fractions from aerial parts of glasswort (Salicornia herbacea L.). Korean Journal of Food Science and Technology, 2016, 48, 574-581.	0.3	2
56	Effects of Proteins on the Reactivity of Various Phenolic Compounds with the Folin-Ciocalteu Reagent. Korean Journal of Food Science and Technology, 2015, 47, 299-305.	0.3	1