List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4252291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDGFRα ⁺ subepithelial interstitial cells act as a pacemaker to drive smooth muscle of the guinea pig seminal vesicle. Journal of Physiology, 2022, 600, 1703-1730.	2.9	1
2	Mechanosensitive modulation of peristaltic contractions in the mouse renal pelvis. European Journal of Pharmacology, 2022, 920, 174834.	3.5	5
3	Nitric oxideâ€mediated signal transmission in bladder vasculature underlies the therapeutic actions of PDE5 inhibitors in the rat. British Journal of Pharmacology, 2021, 178, 1073-1094.	5.4	9
4	Comparative effects of angiotensin II on the contractility of muscularis mucosae and detrusor in the pig urinary bladder. Neurourology and Urodynamics, 2021, 40, 102-111.	1.5	3
5	Functional nitrergic innervation of smooth muscle structures in the mucosa of pig lower urinary tract. Cell and Tissue Research, 2021, 386, 513-531.	2.9	1
6	Mechanisms underlying the prokinetic effects of endogenous glucagon-like peptide-1 in the rat proximal colon. American Journal of Physiology - Renal Physiology, 2021, 321, G617-G627.	3.4	3
7	Contractile elements and their sympathetic regulations in the pig urinary bladder: a species and regional comparative study. Cell and Tissue Research, 2020, 379, 373-387.	2.9	14
8	New targets for overactive bladder—ICIâ€RS 2109. Neurourology and Urodynamics, 2020, 39, S113-S121.	1.5	11
9	ATYPICAL or INTERSTITIAL, take your PIC. Journal of Physiology, 2020, 598, 3061-3062.	2.9	3
10	Functional heterogeneity of PDGFRα (+) cells in spontaneously active urogenital tissues. Neurourology and Urodynamics, 2020, 39, 1667-1678.	1.5	7
11	Neural regulation of the contractility of nutrient artery in the guinea pig tibia. Pflugers Archiv European Journal of Physiology, 2020, 472, 481-494.	2.8	4
12	Are oxidative stress and ischemia significant causes of bladder damage leading to lower urinary tract dysfunction? Report from the IClâ€RS 2019. Neurourology and Urodynamics, 2020, 39, S16-S22.	1.5	21
13	Synchrony of spontaneous Ca ²⁺ activity in microvascular mural cells. Journal of Smooth Muscle Research, 2020, 56, 1-18.	1.2	9
14	Properties of SK3 channel-expressing PDGFRα (+) cells in the rodent urinary bladder. European Journal of Pharmacology, 2019, 860, 172552.	3.5	7
15	Mucosa-Dependent, Stretch-Sensitive Spontaneous Activity in Seminal Vesicle. Advances in Experimental Medicine and Biology, 2019, 1124, 217-231.	1.6	1
16	Role of Pericytes in theÂlnitiation and Propagation of Spontaneous Activity in theÂMicrovasculature. Advances in Experimental Medicine and Biology, 2019, 1124, 329-356.	1.6	6
17	Pacemaker Mechanisms Driving Pyeloureteric Peristalsis: Modulatory Role of Interstitial Cells. Advances in Experimental Medicine and Biology, 2019, 1124, 77-101.	1.6	12
18	Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles. Pflugers Archiv European Journal of Physiology, 2019, 471, 1025-1040.	2.8	2

#	Article	IF	CITATIONS
19	Exercise-induced sympathetic dilatation in arterioles of the guinea pig tibial periosteum. Autonomic Neuroscience: Basic and Clinical, 2019, 217, 7-17.	2.8	1
20	What are the origins and relevance of spontaneous bladder contractions? ICIâ€RS 2017. Neurourology and Urodynamics, 2018, 37, S13-S19.	1.5	14
21	Role of K+ channels in regulating spontaneous activity in the muscularis mucosae of guinea pig bladder. European Journal of Pharmacology, 2018, 818, 30-37.	3.5	9
22	Role of capillary pericytes in the integration of spontaneous Ca ²⁺ transients in the suburothelial microvasculature <i>in situ</i> of the mouse bladder. Journal of Physiology, 2018, 596, 3531-3552.	2.9	19
23	Interstitial cell modulation of pyeloureteric peristalsis in the mouse renal pelvis examined using FIBSEM tomography and calcium indicators. Pflugers Archiv European Journal of Physiology, 2017, 469, 797-813.	2.8	19
24	Contractile properties of periosteal arterioles in the guinea-pig tibia. Pflugers Archiv European Journal of Physiology, 2017, 469, 1203-1213.	2.8	5
25	Role of mucosa in generating spontaneous activity in the guinea pig seminal vesicle. Journal of Physiology, 2017, 595, 4803-4821.	2.9	6
26	Properties of synchronous spontaneous Ca2+ transients in the mural cells of rat rectal arterioles. Pflugers Archiv European Journal of Physiology, 2017, 469, 1189-1202.	2.8	6
27	Nerve-induced responses of mouse vaginal smooth muscle. Pflugers Archiv European Journal of Physiology, 2017, 469, 1373-1385.	2.8	11
28	Role of prostatic interstitial cells in prostate motility. Journal of Smooth Muscle Research, 2017, 53, 57-72.	1.2	7
29	Angiotensin receptorâ€IA knockout leads to hydronephrosis not associated with a loss of pyeloureteric peristalsis in the mouse renal pelvis. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 535-542.	1.9	6
30	Role of PTHrP and Sensory Nerve Peptides in Regulating Contractility of Muscularis Mucosae and Detrusor Smooth Muscle in the Guinea Pig Bladder. Journal of Urology, 2016, 196, 1287-1294.	0.4	19
31	Spontaneous activity in the microvasculature of visceral organs: role of pericytes and voltageâ€dependent Ca ²⁺ channels. Journal of Physiology, 2016, 594, 555-565.	2.9	19
32	Effects of K + channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder. European Journal of Pharmacology, 2016, 789, 179-186.	3.5	15
33	Electrical properties of purinergic transmission in smooth muscle of the guinea-pig prostate. Autonomic Neuroscience: Basic and Clinical, 2016, 194, 8-16.	2.8	5
34	Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder. Pflugers Archiv European Journal of Physiology, 2016, 468, 1573-1585.	2.8	23
35	Mechanisms underlying spontaneous constrictions of postcapillary venules in the rat stomach. Pflugers Archiv European Journal of Physiology, 2016, 468, 279-291.	2.8	9
36	Pacemaker role of pericytes in generating synchronized spontaneous Ca2+ transients in the myenteric microvasculature of the guinea-pig gastric antrum. Cell Calcium, 2015, 58, 442-456.	2.4	14

#	Article	IF	CITATIONS
37	Functional properties of submucosal venules in the rat stomach. Pflugers Archiv European Journal of Physiology, 2015, 467, 1327-1342.	2.8	10
38	Altered Detrusor Gap Junction Communications Induce Storage Symptoms in Bladder Inflammation: A Mouse Cyclophosphamide-Induced Model of Cystitis. PLoS ONE, 2014, 9, e104216.	2.5	23
39	Voltage-operated Ca2+currents and Ca2+-activated Cl-currents in single interstitial cells of the guinea pig prostate. BJU International, 2014, 114, n/a-n/a.	2.5	14
40	Neurohumoral regulation of spontaneous constrictions in suburothelial venules of the rat urinary bladder. Vascular Pharmacology, 2014, 60, 84-94.	2.1	16
41	Voltage Dependence of Slow Wave Frequency in the Guinea Pig Prostate. Journal of Urology, 2014, 192, 1286-1292.	0.4	9
42	Immunohistochemical characteristics of suburothelial microvasculature in the mouse bladder. Histochemistry and Cell Biology, 2013, 140, 189-200.	1.7	26
43	Properties of submucosal venules in the rat distal colon. British Journal of Pharmacology, 2013, 170, 968-977.	5.4	16
44	PTHrP Is Endogenous Relaxant for Spontaneous Smooth Muscle Contraction in Urinary Bladder of Female Rat. Endocrinology, 2013, 154, 2058-2068.	2.8	12
45	Potassium and ANO1/ TMEM16A chloride channel profiles distinguish atypical and typical smooth muscle cells from interstitial cells in the mouse renal pelvis. British Journal of Pharmacology, 2012, 165, 2389-2408.	5.4	29
46	Functional and morphological properties of pericytes in suburothelial venules of the mouse bladder. British Journal of Pharmacology, 2012, 167, 1723-1736.	5.4	33
47	Functional Properties of Suburothelial Microvessels in the Rat Bladder. Journal of Urology, 2011, 185, 2382-2391.	0.4	36
48	Spontaneous Ca ²⁺ Signaling of Interstitial Cells in the Guinea Pig Prostate. Journal of Urology, 2011, 186, 2478-2486.	0.4	14
49	Factors which determine the duration of follower potentials in longitudinal smooth muscle isolated from the guinea-pig stomach antrum. Journal of Smooth Muscle Research, 2011, 47, 89-110.	1.2	1
50	Functions of ICCâ€like cells in the urinary tract and male genital organs. Journal of Cellular and Molecular Medicine, 2010, 14, 1199-1211.	3.6	32
51	Role of perinuclear mitochondria in the spatiotemporal dynamics of spontaneous Ca ²⁺ waves in interstitial cells of Cajalâ€like cells of the rabbit urethra. British Journal of Pharmacology, 2010, 161, 680-694.	5.4	28
52	Spontaneous electrical and Ca ²⁺ signals in the mouse renal pelvis that drive pyeloureteric peristalsis. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 509-515.	1.9	33
53	Distinct effects of CGRP on typical and atypical smooth muscle cells involved in generating spontaneous contractions in the mouse renal pelvis. British Journal of Pharmacology, 2009, 158, 2030-2045.	5.4	25
54	Role of K ⁺ Channels in Regulating Spontaneous Activity in Detrusor Smooth Muscle In Situ in the Mouse Bladder. Journal of Urology, 2009, 181, 2355-2365.	0.4	38

#	Article	IF	CITATIONS
55	Altered distribution of interstitial cells in the guinea pig bladder following bladder outlet obstruction. Neurourology and Urodynamics, 2008, 27, 330-340.	1.5	64
56	Role of nitric oxide/cyclic GMP pathway in regulating spontaneous excitations in detrusor smooth muscle of the guineaâ€pig bladder. Neurourology and Urodynamics, 2008, 27, 446-453.	1.5	29
57	Properties of spontaneous Ca ²⁺ transients recorded from interstitial cells of Cajalâ€like cells of the rabbit urethra <i>in situ</i> . Journal of Physiology, 2007, 583, 505-519.	2.9	38
58	Spontaneous electrical and Ca ²⁺ signals in typical and atypical smooth muscle cells and interstitial cell of Cajalâ€like cells of mouse renal pelvis. Journal of Physiology, 2007, 583, 1049-1068.	2.9	63
59	The role of Ni2+-sensitive T-type Ca2+ channels in the regulation of spontaneous excitation in detrusor smooth muscles of the guinea-pig bladder. BJU International, 2006, 97, 182-189.	2.5	21
60	Heterogeneous CPA sensitivity of spontaneous excitation in smooth muscle of the rabbit urethra. British Journal of Pharmacology, 2006, 148, 340-349.	5.4	12
61	Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis. Journal of Physiology, 2006, 576, 707-714.	2.9	57
62	Atypical slow waves generated in gastric corpus provide dominant pacemaker activity in guinea pig stomach. Journal of Physiology, 2005, 569, 459-465.	2.9	37
63	Interaction between spontaneous and neurally mediated regulation of smooth muscle tone in the rabbit corpus cavernosum. Journal of Physiology, 2005, 569, 723-735.	2.9	30
64	Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder. British Journal of Pharmacology, 2004, 141, 183-193.	5.4	117
65	Identification of interstitial cells of Cajal in corporal tissues of the guinea-pig penis. British Journal of Pharmacology, 2004, 141, 199-204.	5.4	31
66	Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+signals in detrusor smooth muscles of the guinea-pig urinary bladder. Journal of Physiology, 2004, 559, 567-581.	2.9	146
67	Electrical properties of detrusor smooth muscles from the pig and human urinary bladder. British Journal of Pharmacology, 2003, 140, 146-158.	5.4	92
68	lonic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder. British Journal of Pharmacology, 2003, 140, 159-169.	5.4	116
69	Role of Mitochondria in the Generation of Spontaneous Activity in Detrusor Smooth Muscles of the Guinea Pig Bladder Journal of Urology, 2003, 170, 628-633.	0.4	17
70	Cellular mechanisms of nitric oxideâ€induced relaxation of corporeal smooth muscle in the guineaâ€pig. Journal of Physiology, 2002, 538, 573-581.	2.9	22
71	EFFECTS OF ISOPROTERENOL ON SPONTANEOUS EXCITATIONS IN DETRUSOR SMOOTH MUSCLE CELLS OF THE GUINEA PIG. Journal of Urology, 2001, 166, 335-340.	0.4	28
72	Origin and propagation of spontaneous excitation in smooth muscle of the guineaâ€pig urinary bladder. Journal of Physiology, 2001, 530, 273-286.	2.9	119

#	Article	IF	CITATIONS
73	Neuroeffector transmission to different layers of smooth muscle in the rat penile bulb. Journal of Physiology, 2000, 524, 549-563.	2.9	14
74	Effects of Y-26763, A Novel K-Channel Opener, on Electrical Responses of Smooth Muscles in the Guinea Pig Bladder. Journal of Urology, 1996, 155, 1454-1458.	0.4	15
75	Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. British Journal of Pharmacology, 1996, 118, 1627-1632.	5.4	118