## Kirk E Lohmueller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4250819/publications.pdf Version: 2024-02-01



KIDK ELOHMUELLED

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics, 2003, 33, 177-182.                                                       | 21.4 | 1,818     |
| 2  | A comprehensive review of genetic association studies. Genetics in Medicine, 2002, 4, 45-61.                                                                                                                           | 2.4  | 1,518     |
| 3  | An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia. Science, 2011, 334, 94-98.                                                                                                                | 12.6 | 675       |
| 4  | Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature, 2010, 464, 898-902.                                                                                                 | 27.8 | 635       |
| 5  | Assessing the Evolutionary Impact of Amino Acid Mutations in the Human Genome. PLoS Genetics, 2008,<br>4, e1000083.                                                                                                    | 3.5  | 586       |
| 6  | Methods for High-Density Admixture Mapping of Disease Genes. American Journal of Human Genetics,<br>2004, 74, 979-1000.                                                                                                | 6.2  | 437       |
| 7  | A Simple Genetic Architecture Underlies Morphological Variation in Dogs. PLoS Biology, 2010, 8, e1000451.                                                                                                              | 5.6  | 429       |
| 8  | Proportionally more deleterious genetic variation in European than in African populations. Nature, 2008, 451, 994-997.                                                                                                 | 27.8 | 365       |
| 9  | Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation<br>in dogs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>152-157. | 7.1  | 265       |
| 10 | Genomic Flatlining in the Endangered Island Fox. Current Biology, 2016, 26, 1183-1189.                                                                                                                                 | 3.9  | 201       |
| 11 | Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Science Advances, 2019, 5, eaau0757.                                                                    | 10.3 | 173       |
| 12 | Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinformatics, 2011, 12, 231.                                                                                       | 2.6  | 170       |
| 13 | Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 2017, 206, 345-361.                                                                             | 2.9  | 170       |
| 14 | A Model-Based Approach for Identifying Signatures of Ancient Balancing Selection in Genetic Data.<br>PLoS Genetics, 2014, 10, e1004561.                                                                                | 3.5  | 159       |
| 15 | Global distribution of genomic diversity underscores rich complex history of continental human populations. Genome Research, 2009, 19, 795-803.                                                                        | 5.5  | 155       |
| 16 | Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the<br>Human Genome. PLoS Genetics, 2011, 7, e1002326.                                                              | 3.5  | 146       |
| 17 | The Impact of Population Demography and Selection on the Genetic Architecture of Complex Traits. PLoS Genetics, 2014, 10, e1004379.                                                                                    | 3.5  | 146       |
| 18 | Using Genomic Data to Infer Historic Population Dynamics of Nonmodel Organisms. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 433-456.                                                               | 8.3  | 143       |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Purging of Strongly Deleterious Mutations Explains Long-Term Persistence and Absence of Inbreeding<br>Depression in Island Foxes. Current Biology, 2018, 28, 3487-3494.e4.                             | 3.9  | 140       |
| 20 | Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evolution Letters, 2021, 5, 33-47.                                                           | 3.3  | 127       |
| 21 | The distribution of deleterious genetic variation in human populations. Current Opinion in Genetics and Development, 2014, 29, 139-146.                                                                | 3.3  | 126       |
| 22 | Whole-Exome Sequencing of 2,000 Danish Individuals and the Role of Rare Coding Variants in Type 2<br>Diabetes. American Journal of Human Genetics, 2013, 93, 1072-1086.                                | 6.2  | 124       |
| 23 | Patterns of de novo tandem repeat mutations and their role in autism. Nature, 2021, 589, 246-250.                                                                                                      | 27.8 | 114       |
| 24 | Detecting Ancient Admixture and Estimating Demographic Parameters in Multiple Human Populations.<br>Molecular Biology and Evolution, 2009, 26, 1823-1827.                                              | 8.9  | 113       |
| 25 | Determining the factors driving selective effects of new nonsynonymous mutations. Proceedings of the United States of America, 2017, 114, 4465-4470.                                                   | 7.1  | 113       |
| 26 | A community-maintained standard library of population genetic models. ELife, 2020, 9, .                                                                                                                | 6.0  | 112       |
| 27 | Gene expression drives the evolution of dominance. Nature Communications, 2018, 9, 2750.                                                                                                               | 12.8 | 97        |
| 28 | Height-reducing variants and selection for short stature in Sardinia. Nature Genetics, 2015, 47, 1352-1356.                                                                                            | 21.4 | 96        |
| 29 | Deleterious variation shapes the genomic landscape of introgression. PLoS Genetics, 2018, 14, e1007741.                                                                                                | 3.5  | 95        |
| 30 | Natural Selection Reduced Diversity on Human Y Chromosomes. PLoS Genetics, 2014, 10, e1004064.                                                                                                         | 3.5  | 91        |
| 31 | Amerindian-specific regions under positive selection harbour new lipid variants in Latinos. Nature<br>Communications, 2014, 5, 3983.                                                                   | 12.8 | 81        |
| 32 | Selection and Reduced Population Size Cannot Explain Higher Amounts of Neandertal Ancestry in East<br>Asian than in European Human Populations. American Journal of Human Genetics, 2015, 96, 454-461. | 6.2  | 80        |
| 33 | Genomic history of the Sardinian population. Nature Genetics, 2018, 50, 1426-1434.                                                                                                                     | 21.4 | 71        |
| 34 | Comparison of Single Genome and Allele Frequency Data Reveals Discordant Demographic Histories.<br>G3: Genes, Genomes, Genetics, 2017, 7, 3605-3620.                                                   | 1.8  | 70        |
| 35 | Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. National Science Review, 2019, 6, 810-824.                                               | 9.5  | 65        |
| 36 | Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution. PLoS Genetics, 2020, 16, e1008827.                                                | 3.5  | 65        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The Effect of an Extreme and Prolonged Population Bottleneck on Patterns of Deleterious Variation:<br>Insights from the Greenlandic Inuit. Genetics, 2017, 205, 787-801.                                  | 2.9  | 54        |
| 38 | Methods for Human Demographic Inference Using Haplotype Patterns From Genomewide<br>Single-Nucleotide Polymorphism Data. Genetics, 2009, 182, 217-231.                                                    | 2.9  | 53        |
| 39 | Variants Associated with Common Disease Are Not Unusually Differentiated in Frequency across<br>Populations. American Journal of Human Genetics, 2006, 78, 130-136.                                       | 6.2  | 52        |
| 40 | Determining the Effect of Natural Selection on Linked Neutral Divergence across Species. PLoS<br>Genetics, 2016, 12, e1006199.                                                                            | 3.5  | 49        |
| 41 | The critically endangered vaquita is not doomed to extinction by inbreeding depression. Science, 2022, 376, 635-639.                                                                                      | 12.6 | 49        |
| 42 | Understanding the Hidden Complexity of Latin American Population Isolates. American Journal of<br>Human Genetics, 2018, 103, 707-726.                                                                     | 6.2  | 48        |
| 43 | Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant<br>Otter. Molecular Biology and Evolution, 2019, 36, 2631-2655.                                        | 8.9  | 48        |
| 44 | Natural Selection and Origin of a Melanistic Allele in North American Gray Wolves. Molecular<br>Biology and Evolution, 2018, 35, 1190-1209.                                                               | 8.9  | 45        |
| 45 | Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles. BMC Bioinformatics, 2015, 16, 298.                                    | 2.6  | 40        |
| 46 | Evolutionary History, Selective Sweeps, and Deleterious Variation in the Dog. Annual Review of<br>Ecology, Evolution, and Systematics, 2016, 47, 73-96.                                                   | 8.3  | 37        |
| 47 | Genomic divergence across ecological gradients in the Central African rainforest songbird<br>( <i><scp>A</scp>ndropadus virens</i> ). Molecular Ecology, 2017, 26, 4966-4977.                             | 3.9  | 35        |
| 48 | RADseq data reveal ancient, but not pervasive, introgression between Californian tree and scrub oak<br>species ( <i>Quercus</i> sect. <i>Quercus</i> : Fagaceae). Molecular Ecology, 2018, 27, 4556-4571. | 3.9  | 33        |
| 49 | Detecting Directional Selection in the Presence of Recent Admixture in African-Americans. Genetics, 2011, 187, 823-835.                                                                                   | 2.9  | 32        |
| 50 | The Impact of Recessive Deleterious Variation on Signals of Adaptive Introgression in Human Populations. Genetics, 2020, 215, 799-812.                                                                    | 2.9  | 30        |
| 51 | Negative selection on complex traits limits phenotype prediction accuracy between populations.<br>American Journal of Human Genetics, 2021, 108, 620-631.                                                 | 6.2  | 30        |
| 52 | High-quality genome and methylomes illustrate features underlying evolutionary success of oaks.<br>Nature Communications, 2022, 13, 2047.                                                                 | 12.8 | 30        |
| 53 | The Effect of Recent Admixture on Inference of Ancient Human Population History. Genetics, 2010, 185, 611-622.                                                                                            | 2.9  | 29        |
| 54 | On the prospect of achieving accurate joint estimation of selection with population history. Genome<br>Biology and Evolution, 2022, 14, .                                                                 | 2.5  | 28        |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Calculating the Weight of Evidence in Lowâ€Template Forensic <scp>DNA</scp> Casework. Journal of<br>Forensic Sciences, 2013, 58, S243-9.                                                              | 1.6  | 27        |
| 56 | Growth factor gene IGF1 is associated with bill size in the black-bellied seedcracker Pyrenestes ostrinus. Nature Communications, 2018, 9, 4855.                                                      | 12.8 | 24        |
| 57 | Validation of probabilistic genotyping software for use in forensic DNA casework: Definitions and illustrations. Science and Justice - Journal of the Forensic Science Society, 2016, 56, 104-108.    | 2.1  | 23        |
| 58 | Sex-Averaged Recombination and Mutation Rates on the X Chromosome: A Comment on Labuda etÂal<br>American Journal of Human Genetics, 2010, 86, 978-980.                                                | 6.2  | 22        |
| 59 | Analysis of allelic drop-out using the Identifiler® and PowerPlex® 16 forensic STR typing systems.<br>Forensic Science International: Genetics, 2014, 12, 1-11.                                       | 3.1  | 19        |
| 60 | Greater strength of selection and higher proportion of beneficial amino acid changing mutations in humans compared with mice and <i>Drosophila melanogaster</i> . Genome Research, 2021, 31, 110-120. | 5.5  | 17        |
| 61 | The impact of identity by descent on fitness and disease in dogs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                       | 7.1  | 17        |
| 62 | Negative linkage disequilibrium between amino acid changing variants reveals interference among deleterious mutations in the human genome. PLoS Genetics, 2021, 17, e1009676.                         | 3.5  | 15        |
| 63 | Genomic analyses reveal rangeâ€wide devastation of sea otter populations. Molecular Ecology, 2023, 32,<br>281-298.                                                                                    | 3.9  | 12        |
| 64 | PReFerSim: fast simulation of demography and selection under the Poisson Random Field model.<br>Bioinformatics, 2016, 32, 3516-3518.                                                                  | 4.1  | 11        |
| 65 | An assessment of the information content of likelihood ratios derived from complex mixtures.<br>Forensic Science International: Genetics, 2016, 22, 64-72.                                            | 3.1  | 7         |
| 66 | Testing whether stutter and low-level DNA peaks are additive. Forensic Science International:<br>Genetics, 2019, 43, 102166.                                                                          | 3.1  | 7         |
| 67 | Complex patterns of sex-biased demography in canines. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20181976.                                                                   | 2.6  | 6         |
| 68 | Ten simple rules for giving an effective academic job talk. PLoS Computational Biology, 2019, 15, e1007163.                                                                                           | 3.2  | 5         |
| 69 | A signature of Neanderthal introgression on molecular mechanisms of environmental responses.<br>PLoS Genetics, 2021, 17, e1009493.                                                                    | 3.5  | 5         |
| 70 | Graydon et al. provide no new evidence that forensic STR loci are functional. Forensic Science<br>International: Genetics, 2010, 4, 273-274.                                                          | 3.1  | 4         |
| 71 | Leveraging ancestry to improve causal variant identification in exome sequencing for monogenic disorders. European Journal of Human Genetics, 2016, 24, 113-119.                                      | 2.8  | 3         |
| 72 | On the origin of Peter Rabbit. Science, 2014, 345, 1000-1001.                                                                                                                                         | 12.6 | 2         |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Fitting the Balding–Nichols model to forensic databases. Forensic Science International: Genetics, 2015, 19, 86-91.                                                                    | 3.1  | 2         |
| 74 | Identification and characterization of constrained non-exonic bases lacking predictive epigenomic and transcription factor binding annotations. Nature Communications, 2020, 11, 6168. | 12.8 | 1         |
| 75 | Haplotype-based inference of the distribution of fitness effects. Genetics, 2022, 220, .                                                                                               | 2.9  | 1         |
| 76 | Title is missing!. , 2020, 16, e1008827.                                                                                                                                               |      | 0         |
| 77 | Title is missing!. , 2020, 16, e1008827.                                                                                                                                               |      | 0         |
| 78 | Title is missing!. , 2020, 16, e1008827.                                                                                                                                               |      | 0         |
| 79 | Title is missing!. , 2020, 16, e1008827.                                                                                                                                               |      | 0         |