
Zhouping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4248157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiplexed Fluorescence Resonance Energy Transfer Aptasensor between Upconversion Nanoparticles and Graphene Oxide for the Simultaneous Determination of Mycotoxins. Analytical Chemistry, 2012, 84, 6263-6270.	6.5	303
2	Enhanced Visible-Light-Driven Photocatalytic Disinfection Performance and Organic Pollutant Degradation Activity of Porous g-C ₃ N ₄ Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 27727-27735.	8.0	300
3	Simultaneous Aptasensor for Multiplex Pathogenic Bacteria Detection Based on Multicolor Upconversion Nanoparticles Labels. Analytical Chemistry, 2014, 86, 3100-3107.	6.5	285
4	Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosensors and Bioelectronics, 2015, 74, 872-877.	10.1	242
5	Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control, 2015, 50, 597-604.	5.5	188
6	An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of Microbiological Methods, 2014, 98, 94-98.	1.6	181
7	Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n-n heterojunction via ï€-ï€ interaction and interfacial charge separation. Applied Catalysis B: Environmental, 2020, 271, 118933.	20.2	161
8	Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples. Journal of Agricultural and Food Chemistry, 2018, 66, 1949-1954.	5.2	148
9	Selection and Characterization of Aptamers against Salmonella typhimurium Using Whole-Bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). Journal of Agricultural and Food Chemistry, 2013, 61, 3229-3234.	5.2	144
10	Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels. Analyst, The, 2011, 136, 2306.	3.5	132
11	Selection and Identification of a DNA Aptamer Targeted to Vibrio parahemolyticus. Journal of Agricultural and Food Chemistry, 2012, 60, 4034-4038.	5.2	129
12	Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Mikrochimica Acta, 2015, 182, 917-923.	5.0	129
13	Advances in aptasensors for the detection of food contaminants. Analyst, The, 2016, 141, 3942-3961.	3.5	118
14	A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins, 2016, 8, 176.	3.4	114
15	Capture-SELEX for aptamer selection: A short review. Talanta, 2021, 229, 122274.	5.5	112
16	Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Mikrochimica Acta, 2014, 181, 967-974.	5.0	106
17	Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. International Journal of Food Microbiology, 2016, 218, 38-43.	4.7	105
18	Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Mikrochimica Acta, 2016, 183, 337-344.	5.0	105

#	Article	IF	CITATIONS
19	Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Applied Catalysis B: Environmental, 2022, 312, 121438.	20.2	105
20	A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta, 2014, 127, 163-168.	5.5	104
21	Selection and identification of ssDNA aptamers recognizing zearalenone. Analytical and Bioanalytical Chemistry, 2013, 405, 6573-6581.	3.7	97
22	Aptamer Induced Multicolored AuNCs-WS ₂ "Turn on―FRET Nano Platform for Dual-Color Simultaneous Detection of AflatoxinB ₁ and Zearalenone. Analytical Chemistry, 2019, 91, 14085-14092.	6.5	96
23	An all-organic 0D/2D supramolecular porphyrin/g-C3N4 heterojunction assembled via ï€-ï€ interaction for efficient visible photocatalytic oxidation. Applied Catalysis B: Environmental, 2021, 291, 120059.	20.2	86
24	Screening and Identification of DNA Aptamers against T-2 Toxin Assisted by Graphene Oxide. Journal of Agricultural and Food Chemistry, 2014, 62, 10368-10374.	5.2	84
25	Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin. Analytical Biochemistry, 2016, 508, 58-64.	2.4	84
26	Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+. Talanta, 2014, 128, 327-336.	5.5	83
27	Enhanced visible-light-induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles. Catalysis Today, 2019, 332, 227-235.	4.4	83
28	Colorimetric Aptasensor Based on Truncated Aptamer and Trivalent DNAzyme for <i>Vibrio parahemolyticus</i> Determination. Journal of Agricultural and Food Chemistry, 2019, 67, 2313-2320.	5.2	81
29	High antibacterial activity of chitosan – molybdenum disulfide nanocomposite. Carbohydrate Polymers, 2019, 215, 226-234.	10.2	78
30	Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control, 2013, 33, 239-243.	5.5	77
31	A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels. Analytica Chimica Acta, 2013, 804, 151-158.	5.4	76
32	A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Mikrochimica Acta, 2016, 183, 1909-1916.	5.0	76
33	Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing. Biosensors and Bioelectronics, 2017, 90, 203-209.	10.1	76
34	Selection, identification, and application of Aflatoxin B1 aptamer. European Food Research and Technology, 2014, 238, 919-925.	3.3	74
35	Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chemistry, 2015, 166, 623-629.	8.2	72
36	Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label. Analytical and Bioanalytical Chemistry, 2010, 398, 2125-2132.	3.7	71

#	Article	IF	CITATIONS
37	Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Scientific Reports, 2016, 6, 21665.	3.3	71
38	Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Mikrochimica Acta, 2018, 185, 325.	5.0	71
39	Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin. Sensors and Actuators B: Chemical, 2018, 277, 328-335.	7.8	70
40	Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnology Advances, 2022, 55, 107902.	11.7	67
41	Colorimetric Aptasensor Based on Enzyme for the Detection of <i>Vibrio parahemolyticus</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 7849-7854.	5.2	66
42	Nanogapped Au(core) @ Au-Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A. Analytica Chimica Acta, 2018, 1033, 165-172.	5.4	65
43	A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Mikrochimica Acta, 2018, 185, 497.	5.0	64
44	Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC–MS–O, GC–IMS, and E-nose. Food Chemistry, 2022, 386, 132728.	8.2	64
45	A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. International Journal of Food Microbiology, 2017, 245, 1-5.	4.7	62
46	Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe 2 O 4 -reduced graphene oxide nanostructures as an effective peroxidase mimetics. International Journal of Food Microbiology, 2017, 261, 42-48.	4.7	62
47	Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. TrAC - Trends in Analytical Chemistry, 2019, 119, 115637.	11.4	62
48	Unprecedented effect of CO2 calcination atmosphere on photocatalytic H2 production activity from water using g-C3N4 synthesized from triazole polymerization. Applied Catalysis B: Environmental, 2019, 241, 141-148.	20.2	62
49	An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Biosensors and Bioelectronics, 2017, 91, 538-544.	10.1	61
50	A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling. Food Control, 2014, 37, 188-192.	5.5	60
51	Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly. Talanta, 2017, 165, 412-418.	5.5	60
52	A novel bioassay based on aptamer-functionalized magnetic nanoparticle for the detection of zearalenone using time resolved-fluorescence NaYF4: Ce/Tb nanoparticles as signal probe. Talanta, 2018, 186, 97-103.	5.5	60
53	An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection. Analytica Chimica Acta, 2017, 959, 83-90.	5.4	59
54	Graphene oxide wrapped Fe3O4@Au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy. Mikrochimica Acta, 2017, 184, 2653-2660.	5.0	59

#	Article	IF	CITATIONS
55	Facile synthesis and antibacterial activity of geraniol conjugated chitosan oligosaccharide derivatives. Carbohydrate Polymers, 2021, 251, 117099.	10.2	58
56	A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Analytica Chimica Acta, 2013, 782, 59-66.	5.4	57
57	Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Biosensors and Bioelectronics, 2013, 39, 145-151.	10.1	56
58	Mycotoxigenic Potentials of Fusarium Species in Various Culture Matrices Revealed by Mycotoxin Profiling. Toxins, 2017, 9, 6.	3.4	56
59	Surface-Enhanced Raman Scattering-Fluorescence Dual-Mode Nanosensors for Quantitative Detection of Cytochrome c in Living Cells. Analytical Chemistry, 2019, 91, 6600-6607.	6.5	56
60	Preparation and characterization of k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation. Food Chemistry, 2021, 364, 130441.	8.2	56
61	Vibrio parahaemolyticus detection aptasensor using surface-enhanced Raman scattering. Food Control, 2016, 63, 122-127.	5.5	54
62	Selection, Identification, and Binding Mechanism Studies of an ssDNA Aptamer Targeted to Different Stages of <i>E. coli O157:H7</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 5677-5682.	5.2	54
63	Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering. Journal of Materials Science and Technology, 2020, 49, 133-143.	10.7	54
64	Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Mikrochimica Acta, 2015, 182, 1709-1714.	5.0	52
65	Magnetic Separation-Based Multiple SELEX for Effectively Selecting Aptamers against Saxitoxin, Domoic Acid, and Tetrodotoxin. Journal of Agricultural and Food Chemistry, 2018, 66, 9801-9809.	5.2	51
66	Changes in the microbial communities in vacuum-packaged smoked bacon during storage. Food Microbiology, 2019, 77, 26-37.	4.2	51
67	A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118103.	3.9	51
68	A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk. Biosensors and Bioelectronics, 2015, 74, 170-176.	10.1	50
69	Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 231, 118104.	3.9	49
70	Selection and Application of ssDNA Aptamers against Clenbuterol Hydrochloride Based on ssDNA Library Immobilized SELEX. Journal of Agricultural and Food Chemistry, 2017, 65, 1771-1777.	5.2	48
71	CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti3C2Tx MXene as the enhanced quencher. Journal of Hazardous Materials, 2022, 433, 128750.	12.4	48
72	Aptasensors for quantitative detection of Salmonella Typhimurium. Analytical Biochemistry, 2017, 533, 18-25.	2.4	47

#	Article	IF	CITATIONS
73	In vitro selection of a DNA aptamer targeted against Shigella dysenteriae. Journal of Microbiological Methods, 2013, 94, 170-174.	1.6	46
74	Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor. Analytical and Bioanalytical Chemistry, 2015, 407, 1303-1312.	3.7	46
75	A novel fluorescent aptasensor for aflatoxin M1 detection using rolling circle amplification and g-C3N4 as fluorescence quencher. Sensors and Actuators B: Chemical, 2020, 315, 128049.	7.8	46
76	Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1. Mikrochimica Acta, 2014, 181, 1317-1324.	5.0	44
77	An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine. Analytica Chimica Acta, 2017, 961, 100-105.	5.4	44
78	Assessing the toxicity inÂvitro of degradation products from deoxynivalenol photocatalytic degradation by using upconversion nanoparticles@TiO2 composite. Chemosphere, 2020, 238, 124648.	8.2	44
79	High-affinity aptamer of allergen β-lactoglobulin: Selection, recognition mechanism and application. Sensors and Actuators B: Chemical, 2021, 340, 129956.	7.8	43
80	Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin A. Analytical Methods, 2014, 6, 690-697.	2.7	42
81	Gold Nanoparticle-Based Fluorescence Resonance Energy Transfer Aptasensor for Ochratoxin A Detection. Analytical Letters, 2012, 45, 714-723.	1.8	41
82	Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chinese Journal of Catalysis, 2020, 41, 474-484.	14.0	41
83	Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline. Analytical Biochemistry, 2015, 489, 44-49.	2.4	40
84	Mn2+-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Analytical and Bioanalytical Chemistry, 2016, 408, 3823-3831.	3.7	40
85	A "turnon―aptasensor for simultaneous and time-resolved fluorometric determination of zearalenone, trichothecenes A and aflatoxin B1 using WS2 as a quencher. Mikrochimica Acta, 2019, 186, 575.	5.0	40
86	Photocatalysis and degradation products identification of deoxynivalenol in wheat using upconversion nanoparticles@TiO2 composite. Food Chemistry, 2020, 323, 126823.	8.2	40
87	A Visual and Sensitive Detection of Escherichia coli Based on Aptamer and Peroxidase-like Mimics of Copper-Metal Organic Framework Nanoparticles. Food Analytical Methods, 2020, 13, 1433-1441.	2.6	38
88	Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer. Talanta, 2021, 230, 122349.	5.5	38
89	Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles. Analytical and Bioanalytical Chemistry, 2015, 407, 7907-7915.	3.7	37
90	A chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk. Analytical Methods, 2016, 8, 7929-7936.	2.7	37

#	Article	IF	CITATIONS
91	Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels. International Journal of Food Microbiology, 2016, 237, 172-179.	4.7	37
92	A highly selective and sensitive electrochemical CS–MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection. Talanta, 2015, 141, 300-306.	5.5	35
93	A near-infrared magnetic aptasensor for Ochratoxin A based on near-infrared upconversion nanoparticles and magnetic nanoparticles. Talanta, 2016, 158, 246-253.	5.5	35
94	Selection and application of ssDNA aptamers against spermine based on Capture-SELEX. Analytica Chimica Acta, 2019, 1081, 168-175.	5.4	35
95	Fluorometric determination of lipopolysaccharides via changes of the graphene oxide-enhanced fluorescence polarization caused by truncated aptamers. Mikrochimica Acta, 2019, 186, 173.	5.0	35
96	Upconversion Nanoparticles Assembled with Gold Nanourchins as Luminescence and Surface-Enhanced Raman Scattering Dual-Mode Aptasensors for Detection of Ochratoxin A. ACS Applied Nano Materials, 2021, 4, 8231-8240.	5.0	34
97	A Colorimetric Strip for Rapid Detection and Real-Time Monitoring of Histamine in Fish Based on Self-Assembled Polydiacetylene Vesicles. Analytical Chemistry, 2020, 92, 1611-1617.	6.5	33
98	Fabrication of magnetically recyclable yolk-shell Fe3O4@TiO2 nanosheet/Ag/g-C3N4 microspheres for enhanced photocatalytic degradation of organic pollutants. Nano Research, 2021, 14, 2363-2371.	10.4	33
99	A chemiluminescent aptasensor based on rolling circle amplification and Co2+/N-(aminobutyl)-N-(ethylisoluminol) functional flowerlike gold nanoparticles for Salmonella typhimurium detection. Talanta, 2017, 164, 275-282.	5.5	32
100	Fe3O4@Au@Ag nanoparticles as surface-enhanced Raman spectroscopy substrates for sensitive detection of clenbuterol hydrochloride in pork with the use of aptamer binding. LWT - Food Science and Technology, 2020, 134, 110017.	5.2	32
101	A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. Analytical Biochemistry, 2014, 454, 1-6.	2.4	31
102	Evolution of Volatile Compounds and Spoilage Bacteria in Smoked Bacon during Refrigeration Using an E-Nose and GC-MS Combined with Partial Least Squares Regression. Molecules, 2018, 23, 3286.	3.8	31
103	A colorimetric aptamer-based method for detection of cadmium using the enhanced peroxidase-like activity of Au–MoS2 nanocomposites. Analytical Biochemistry, 2020, 608, 113844.	2.4	31
104	Highly sensitive aptasensor for oxytetracycline based on upconversion and magnetic nanoparticles. Analytical Methods, 2015, 7, 2585-2593.	2.7	30
105	An aptasensor based on fluorescence resonance energy transfer for multiplexed pathogenic bacteria determination. Analytical Methods, 2016, 8, 1390-1395.	2.7	30
106	Recyclable (Fe ₃ O ₄ -NaYF ₄ :Yb,Tm)@TiO ₂ nanocomposites with near-infrared enhanced photocatalytic activity. Dalton Transactions, 2018, 47, 1666-1673.	3.3	30
107	Polyethylenimine modified MoS2 nanocomposite with high stability and enhanced photothermal antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112762.	3.9	30
108	GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B1 with low dosage aptamer probe. Analytical and Bioanalytical Chemistry, 2019, 411, 1107-1115.	3.7	29

#	Article	IF	CITATIONS
109	Aptamer truncation strategy assisted by molecular docking and sensitive detection of T-2 toxin using SYBR Green I as a signal amplifier. Food Chemistry, 2022, 381, 132171.	8.2	29
110	Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Mikrochimica Acta, 2014, 181, 321-327.	5.0	28
111	Photocatalytic degradation of microcystin-LR with a nanostructured photocatalyst based on upconversion nanoparticles@TiO2 composite under simulated solar lights. Scientific Reports, 2017, 7, 14435.	3.3	28
112	A fluorescence polarization aptasensor coupled with polymerase chain reaction and streptavidin for chloramphenicol detection. Talanta, 2019, 205, 120119.	5.5	28
113	Simultaneous detection of fumonisin B1 and ochratoxin A using dual-color, time-resolved luminescent nanoparticles (NaYF4: Ce, Tb and NH2-Eu/DPA@SiO2) as labels. Analytical and Bioanalytical Chemistry, 2019, 411, 1453-1465.	3.7	28
114	Photodynamic chitosan functionalized MoS2 nanocomposite with enhanced and broad-spectrum antibacterial activity. Carbohydrate Polymers, 2022, 277, 118808.	10.2	28
115	SERS aptasensor detection of Salmonella typhimurium using a magnetic gold nanoparticle and gold nanoparticle based sandwich structure. Analytical Methods, 2016, 8, 8099-8105.	2.7	27
116	Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles. Mikrochimica Acta, 2017, 184, 4235-4242.	5.0	27
117	A comprehensive review on the prevalence, pathogenesis and detection of <i>Yersinia enterocolitica </i> . RSC Advances, 2019, 9, 41010-41021.	3.6	27
118	A Colorimetric Aptamer Sensor Based on the Enhanced Peroxidase Activity of Functionalized Graphene/Fe3O4-AuNPs for Detection of Lead (II) Ions. Catalysts, 2020, 10, 600.	3.5	27
119	Fabrication of PAA coated green-emitting AuNCs for construction of label-free FRET assembly for specific recognition of T-2 toxin. Sensors and Actuators B: Chemical, 2020, 321, 128470.	7.8	27
120	Polydimethylsiloxane Gold Nanoparticle Composite Film as Structure for Aptamer-Based Detection of Vibrio parahaemolyticus by Surface-Enhanced Raman Spectroscopy. Food Analytical Methods, 2019, 12, 595-603.	2.6	26
121	Surface-enhanced Raman spectroscopic–based aptasensor for Shigella sonnei using a dual-functional metal complex-ligated gold nanoparticles dimer. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110940.	5.0	26
122	Fabrication of gold/silver nanodimer SERS probes for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Mikrochimica Acta, 2021, 188, 202.	5.0	26
123	Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Mikrochimica Acta, 2011, 172, 431-437.	5.0	25
124	Structure-switching fluorescence aptasensor for sensitive detection of chloramphenicol. Mikrochimica Acta, 2020, 187, 505.	5.0	25
125	Sensitive detection of patulin based on DNase âassisted fluorescent aptasensor by using AuNCs-modified truncated aptamer. Food Control, 2022, 131, 108430.	5.5	25
126	Sensitive colorimetric aptasensor based on stimuli-responsive metal-organic framework nano-container and trivalent DNAzyme for zearalenone determination in food samples. Food Chemistry, 2022, 371, 131145.	8.2	25

#	Article	IF	CITATIONS
127	A novel ratiometric aptasensor based on dual-emission fluorescent signals and the conformation of G-quadruplex for OTA detection. Sensors and Actuators B: Chemical, 2022, 358, 131484.	7.8	25
128	Sensitive immunoassay of Listeria monocytogenes with highly fluorescent bioconjugated silica nanoparticles probe. Journal of Microbiological Methods, 2010, 83, 179-184.	1.6	24
129	Fluorescence resonance energy transfer-based aptamer biosensors for bisphenol A using lanthanide-doped KGdF ₄ nanoparticles. Analytical Methods, 2015, 7, 5186-5192.	2.7	24
130	A competitive fluorescent aptasensor for okadaic acid detection assisted by rolling circle amplification. Mikrochimica Acta, 2017, 184, 2893-2899.	5.0	24
131	A Label-Free Fluorescent Aptasensor for Detection of Staphylococcal Enterotoxin A Based on Aptamer-Functionalized Silver Nanoclusters. Polymers, 2020, 12, 152.	4.5	24
132	Simultaneous degradation of two mycotoxins enabled by a fusion enzyme in food-grade recombinant Kluyveromyces lactis. Bioresources and Bioprocessing, 2021, 8, .	4.2	24
133	Design and optimizing gold nanoparticle-cDNA nanoprobes for aptamer-based lateral flow assay: Application to rapid detection of acetamiprid. Biosensors and Bioelectronics, 2022, 207, 114114.	10.1	24
134	Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Critical Reviews in Food Science and Nutrition, 2023, 63, 9098-9110.	10.3	24
135	Colorimetric aptasensor targeting zearalenone developed based on the hyaluronic Acid-DNA hydrogel and bimetallic MOFzyme. Biosensors and Bioelectronics, 2022, 212, 114366.	10.1	24
136	Real-time and in-situ monitoring of Abrin induced cell apoptosis by using SERS spectroscopy. Talanta, 2019, 195, 8-16.	5.5	23
137	Changes in the phospholipid molecular species in water-boiled salted duck during processing based on shotgun lipidomics. Food Research International, 2020, 132, 109064.	6.2	22
138	Preparation, characterization, and antibiofilm activity of cinnamic acid conjugated hydroxypropyl chitosan derivatives. International Journal of Biological Macromolecules, 2021, 189, 657-667.	7.5	22
139	A simplified fluorescent lateral flow assay for melamine based on aggregation induced emission of gold nanoclusters. Food Chemistry, 2022, 385, 132670.	8.2	22
140	Ultrasensitive chemiluminescent immunoassay of <i>Salmonella</i> with silver enhancement of nanogold labels. Luminescence, 2011, 26, 136-141.	2.9	21
141	DNA aptamer selection and aptamer-based fluorometric displacement assay for the hepatotoxin microcystin-RR. Mikrochimica Acta, 2016, 183, 2555-2562.	5.0	21
142	Selection, identification, and application of dual DNA aptamers against Shigella sonnei. Analytical Methods, 2015, 7, 3625-3631.	2.7	20
143	An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens. Food Analytical Methods, 2017, 10, 2549-2565.	2.6	20
144	A "turn-on" FRET aptasensor based on the metal-organic framework-derived porous carbon and silver nanoclusters for zearalenone determination. Sensors and Actuators B: Chemical, 2021, 347, 130661.	7.8	20

#	Article	IF	CITATIONS
145	Homogeneous time-resolved FRET assay for the detection of Salmonella typhimurium using aptamer-modified NaYF4:Ce/Tb nanoparticles and a fluorescent DNA label. Mikrochimica Acta, 2017, 184, 4021-4027.	5.0	19
146	Influence of mixture of spices on phospholipid molecules during water-boiled salted duck processing based on shotgun lipidomics. Food Research International, 2021, 149, 110651.	6.2	19
147	Competitive HRP-Linked Colorimetric Aptasensor for the Detection of Fumonisin B1 in Food based on Dual Biotin-Streptavidin Interaction. Biosensors, 2020, 10, 31.	4.7	18
148	Research Progress of Optical Aptasensors Based on AuNPs in Food Safety. Food Analytical Methods, 2021, 14, 2136-2151.	2.6	18
149	A 3D/0D cobalt-embedded nitrogen-doped porous carbon/supramolecular porphyrin magnetic-separation photocatalyst with highly efficient pollutant degradation and water oxidation performance. Journal of Materials Science and Technology, 2022, 124, 53-64.	10.7	18
150	Aptamer-based F0F1-ATPase biosensor for Salmonella typhimurium detection. Sensors and Actuators B: Chemical, 2018, 255, 2582-2588.	7.8	17
151	Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. Mikrochimica Acta, 2019, 186, 401.	5.0	17
152	Preparation of gold nanoparticles–agarose gel composite and its application in SERS detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 657-661.	3.9	16
153	Selection and characterization, application of a DNA aptamer targeted to Streptococcus pyogenes in cooked chicken. Analytical Biochemistry, 2018, 551, 37-42.	2.4	16
154	Purification, characterization, and gene cloning of a new cold-adapted β-galactosidase from Erwinia sp. E602 isolated in northeast China. Journal of Dairy Science, 2018, 101, 6946-6954.	3.4	16
155	Surface-enhanced Raman spectroscopy relying on bimetallic Au–Ag nanourchins for the detection of the food allergen β-lactoglobulin. Talanta, 2022, 245, 123445.	5.5	16
156	Electrochemiluminescence Detection of Clarithromycin in Biological Fluids after Capillary Electrophoresis Separation. Analytical Letters, 2008, 41, 1184-1199.	1.8	15
157	Influence of Salt Content Used for Dry-Curing on Lipidomic Profiles during the Processing of Water-Boiled Salted Duck. Journal of Agricultural and Food Chemistry, 2020, 68, 4017-4026.	5.2	15
158	Chlorin e6 conjugated chitosan as an efficient photoantimicrobial agent. International Journal of Biological Macromolecules, 2021, 183, 1309-1316.	7.5	15
159	Deoxynivalenol photocatalytic detoxification products alleviate intestinal barrier damage and gut flora disorder in BLAB/c mice. Food and Chemical Toxicology, 2021, 156, 112510.	3.6	15
160	Transparent and flexible AuNSs/PDMS-based SERS substrates for in-situ detection of pesticide residues. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120542.	3.9	14
161	Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Critical Reviews in Analytical Chemistry, 2024, 54, 355-388.	3.5	14
162	A Novel Colorimetric Detection of S. typhimurium Based on Fe3O4 Magnetic Nanoparticles and Gold Nanoparticles. Food Analytical Methods, 2017, 10, 2735-2742.	2.6	13

#	Article	IF	CITATIONS
163	Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins. Mikrochimica Acta, 2021, 188, 118.	5.0	13
164	Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods, 2021, 10, 2186.	4.3	13
165	Synthesis and characterization of cinnamic acid conjugated N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride derivatives: A hybrid flocculant with antibacterial activity. International Journal of Biological Macromolecules, 2022, 206, 886-895.	7.5	13
166	Deoxynivalenol-induced cell apoptosis monitoring using a cytochrome c-specific ï¬,uorescent probe based on a photoinduced electron transfer reaction. Journal of Hazardous Materials, 2021, 415, 125638.	12.4	12
167	Signal amplification of SiO2 nanoparticle loaded horseradish peroxidase for colorimetric detection of lead ions in water. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120342.	3.9	12
168	Simultaneous coupled with Separate SELEX for heterocyclic biogenic amine-specific aptamers screening and their application in establishment of an effective aptasensor. Sensors and Actuators B: Chemical, 2022, 352, 130985.	7.8	12
169	Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta, 2022, 241, 123228.	5.5	12
170	Analysis of the anti-inflammatory effect of the aptamer LA27 and its binding mechanism. International Journal of Biological Macromolecules, 2020, 165, 308-313.	7.5	11
171	Application of PEG-CdSe@ZnS quantum dots for ROS imaging and evaluation of deoxynivalenol-mediated oxidative stress in living cells. Food and Chemical Toxicology, 2020, 146, 111834.	3.6	11
172	Electrochemical Determination of Capsaicinoids Content in Soy Sauce and Pot-Roast Meat Products Based on Glassy Carbon Electrode Modified with Î'-Cyclodextrin/Carboxylated Multi-Wall Carbon Nanotubes. Foods, 2021, 10, 1743.	4.3	11
173	Gold@silver nanodumbbell based inter-nanogap aptasensor for the surface enhanced Raman spectroscopy determination of ochratoxin A. Analytica Chimica Acta, 2021, 1188, 339189.	5.4	11
174	Fluorescence–Raman dual-mode quantitative detection and imaging of small-molecule thiols in cell apoptosis with DNA-modified gold nanoflowers. Journal of Materials Chemistry B, 2022, 10, 571-581.	5.8	11
175	Selection, truncation and fluorescence polarization based aptasensor for Weissella viridescens detection. Talanta, 2022, 246, 123499.	5.5	11
176	Protective Effects of Ferulic Acid on Deoxynivalenol-Induced Toxicity in IPEC-J2 Cells. Toxins, 2022, 14, 275.	3.4	10
177	Nanomaterial-based optical and electrochemical aptasensors: A reinforced approach for selective recognition of zearalenone. Food Control, 2022, , 109252.	5.5	10
178	L-Argininamide biosensor based on S1 nuclease hydrolysis signal amplification. Mikrochimica Acta, 2012, 176, 209-216.	5.0	9
179	Homogeneous time-resolved fluorescence assay for the detection of ricin using an aptamer immobilized on europium-doped KGdF4 nanoparticles and graphene oxide as a quencher. Mikrochimica Acta, 2015, 182, 1035-1043.	5.0	9
180	Construction of Time-Resolved Luminescence Nanoprobe and Its Application in As(III) Detection. Nanomaterials, 2020, 10, 551.	4.1	9

#	Article	IF	CITATIONS
181	A general strategy to synthesis chitosan oligosaccharide-O-Terpenol derivatives with antibacterial properties. Carbohydrate Research, 2021, 503, 108315.	2.3	9
182	Non-thiolated nucleic acid functionalized gold nanoparticle–based aptamer lateral flow assay for rapid detection of kanamycin. Mikrochimica Acta, 2022, 189, .	5.0	9
183	Fluorometric determination of Vibrio parahaemolyticus using an FOF1-ATPase-based aptamer and labeled chromatophores. Mikrochimica Acta, 2018, 185, 304.	5.0	8
184	Selection of potential aptamers for specific growth stage detection of <i>Yersinia enterocolitica</i> . RSC Advances, 2020, 10, 24743-24752.	3.6	8
185	Effectively Selecting Aptamers for Targeting Aromatic Biogenic Amines and Their Application in Aptasensing Establishment. Journal of Agricultural and Food Chemistry, 2021, 69, 14671-14679.	5.2	8
186	Determination of <i>Salmonella typhimurium</i> by a Fluorescence Resonance Energy Transfer Biosensor Using Upconversion Nanoparticles as Labels. Analytical Letters, 2014, 47, 2048-2060.	1.8	7
187	Screening and application of a broad-spectrum aptamer for acyclic guanosine analogues. Analytical and Bioanalytical Chemistry, 2021, 413, 4855-4863.	3.7	7
188	A phosphorescence resonance energy transfer-based "off-on―long afterglow aptasensor for cadmium detection in food samples. Talanta, 2021, 232, 122409.	5.5	7
189	The isolation of high-affinity ssDNA aptamer for the detection of ribavirin in chicken. Analytical Methods, 2021, 13, 3110-3117.	2.7	7
190	Food-Grade Expression of Manganese Peroxidases in Recombinant Kluyveromyces lactis and Degradation of Aflatoxin B1 Using Fermentation Supernatants. Frontiers in Microbiology, 2021, 12, 821230.	3.5	7
191	A Highly Sensitive "on-off―Time-Resolved Phosphorescence Sensor Based on Aptamer Functionalized Magnetite Nanoparticles for Cadmium Detection in Food Samples. Foods, 2020, 9, 1758.	4.3	6
192	Effect of rutin on the physicochemical and gel characteristics of myofibrillar protein under oxidative stress. Journal of Food Biochemistry, 2021, 45, e13928.	2.9	6
193	Water-soluble chlorin e6-hydroxypropyl chitosan as a high-efficiency photoantimicrobial agent against Staphylococcus aureus. International Journal of Biological Macromolecules, 2022, 208, 669-677.	7.5	6
194	Effects of different freezing methods on the quality of conditioned beef steaks during storage. Journal of Food Processing and Preservation, 2020, 44, e14496.	2.0	5
195	A flowâ€injection chemiluminescent method for the evaluation of the antioxidant activity of 5′â€nucleotides. Luminescence, 2010, 25, 300-306.	2.9	4
196	Quantum Dot-Based F0F1-ATPase Aptasensor for Vibrio parahaemolyticus Detection. Food Analytical Methods, 2019, 12, 1849-1857.	2.6	4
197	Fluorescence imaging of glutathione with aptasensor and monitoring deoxynivalenol-induced oxidative stress in living cells. Sensors and Actuators B: Chemical, 2022, 354, 131190.	7.8	4
198	Synthesis and antibacterial properties of new monomethyl fumaric acidâ€modified chitosan oligosaccharide derivatives. International Journal of Food Science and Technology, 2022, 57, 2872-2878.	2.7	4

#	Article	IF	CITATIONS
199	NANOSTRUCTURE PRESENTED CHEMILUMINESCENCE AND ELECTROCHEMILUMINESCENCE. Annual Review of Nano Research, 2008, , 63-101.	0.2	3
200	Real-time monitoring of active caspase 3 during AFB1 induced apoptosis based on SERS-fluorescent dual mode signals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120195.	3.9	3
201	Bifunctional ligand-mediated amplification of polydiacetylene response to biorecognition of diethylstilbestrol for on-site smartphone detection. Journal of Hazardous Materials, 2022, 432, 128692.	12.4	3
202	Aptamer-Based Fluorescence Detection and Selective Disinfection of Salmonella Typhimurium by Using Hollow Carbon Nitride Nanosphere. Biosensors, 2022, 12, 228.	4.7	3
203	Ultrasensitive Chemiluminescent Detection ofSalmonellawith DNA Hybridization and Silver Amplification of Nanogold Labels. Analytical Letters, 2011, 44, 1063-1076.	1.8	2
204	Preparation of recombinant Kluyveromyces lactis agents for simultaneous degradation of two mycotoxins. AMB Express, 2022, 12, 20.	3.0	2
205	Evaluation of the protein nutrition value for lotus seed. , 2011, , .		1