David J Salant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4246972/publications.pdf Version: 2024-02-01

ΠΑΥΙΟΙ SALANT

#	Article	IF	CITATIONS
1	Advancing Nephrology. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 319-327.	4.5	7
2	Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1–associated membranous nephropathy. Journal of Clinical Investigation, 2021, 131, .	8.2	94
3	PODO: Trial Design: Phase 2 Study of PF-06730512 in Focal Segmental Glomerulosclerosis. Kidney International Reports, 2021, 6, 1629-1633.	0.8	4
4	Insights into Glomerular Filtration and Albuminuria. New England Journal of Medicine, 2021, 384, 1437-1446.	27.0	96
5	Podocyte-specific KLF4 is required to maintain parietal epithelial cell quiescence in the kidney. Science Advances, 2021, 7, eabg6600.	10.3	12
6	Refining Our Understanding of the PLA2R-Antibody Response in Primary Membranous Nephropathy: Looking Forward, Looking Back. Journal of the American Society of Nephrology: JASN, 2020, 31, 8-11.	6.1	6
7	Loss of Roundabout Guidance Receptor 2 (Robo2) in Podocytes Protects Adult Mice from Glomerular Injury by Maintaining Podocyte Foot ProcessÂStructure. American Journal of Pathology, 2020, 190, 799-816.	3.8	10
8	Complement Deficiencies Result in Surrogate Pathways of Complement Activation in Novel Polygenic Lupus-like Models of Kidney Injury. Journal of Immunology, 2020, 204, 2627-2640.	0.8	4
9	Does Epitope Spreading Influence Responsiveness to Rituximab in PLA2R-Associated Membranous Nephropathy?. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1122-1124.	4.5	10
10	Towards minimally-invasive, quantitative assessment of chronic kidney disease using optical spectroscopy. Scientific Reports, 2019, 9, 7168.	3.3	4
11	Unmet challenges in membranous nephropathy. Current Opinion in Nephrology and Hypertension, 2019, 28, 70-76.	2.0	27
12	Activation of fibroblastic reticular cells in kidney lymph node during crescentic glomerulonephritis. Kidney International, 2019, 95, 310-320.	5.2	26
13	Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks. Kidney International Reports, 2018, 3, 464-475.	0.8	114
14	Concurrent Presentation of Thrombotic Thrombocytopenic Purpura and Membranous Nephropathy. Kidney International Reports, 2018, 3, 476-481.	0.8	3
15	LDL Receptor-Related Protein 2 (Megalin) as a Target Antigen in Human Kidney Anti-Brush Border Antibody Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 644-653.	6.1	57
16	TD-02â€Kidney tissue damage in mice with single and combined abnormalities in complement, interferon and apoptotic cell clearance. , 2018, , .		0
17	Deep pockets are not necessarily a good thing in membranous nephropathy: evidence for a modifier allele. Kidney International, 2018, 94, 855-857.	5.2	2
18	Neutrophil exocytosis induces podocyte cytoskeletal reorganization and proteinuria in experimental glomerulonephritis. American Journal of Physiology - Renal Physiology, 2018, 315, F595-F606.	2.7	7

#	Article	IF	CITATIONS
19	Krüppel-like factor 4 is a negative regulator of STAT3-induced glomerular epithelial cell proliferation. JCI Insight, 2018, 3, .	5.0	24
20	ABIN1 Determines Severity of Glomerulonephritis via Activation of Intrinsic Glomerular Inflammation. American Journal of Pathology, 2017, 187, 2799-2810.	3.8	12
21	Thrombotic Microangiopathy: A Multidisciplinary TeamÂApproach. American Journal of Kidney Diseases, 2017, 70, 715-721.	1.9	20
22	Retinoic acid improves nephrotoxic serum–induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney International, 2017, 92, 1444-1457.	5.2	32
23	An Indirect Immunofluorescence Method Facilitates Detection of Thrombospondin Type 1 Domain–Containing 7A–Specific Antibodies in Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 520-531.	6.1	172
24	SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight, 2016, 1, e86934.	5.0	34
25	The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation, 2016, 134, 61-72.	1.6	89
26	Membranous Nephropathy: A Journey From Bench to Bedside. American Journal of Kidney Diseases, 2016, 68, 138-147.	1.9	115
27	Loss of Zeb2 in mesenchyme-derived nephrons causes primary glomerulocystic disease. Kidney International, 2016, 90, 1262-1273.	5.2	17
28	Pregnancy in a Patient With Primary Membranous Nephropathy and Circulating Anti-PLA2R Antibodies: A Case Report. American Journal of Kidney Diseases, 2016, 67, 775-778.	1.9	26
29	IL-6 Trans-Signaling Drives Murine Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 132-142.	6.1	45
30	Shp2 Associates with and Enhances Nephrin Tyrosine Phosphorylation and Is Necessary for Foot Process Spreading in Mouse Models of Podocyte Injury. Molecular and Cellular Biology, 2016, 36, 596-614.	2.3	30
31	Podocyte Expression of B7-1/CD80. Journal of the American Society of Nephrology: JASN, 2016, 27, 963-965.	6.1	21
32	Thrombospondin Type-1 Domain-Containing 7A in Idiopathic Membranous Nephropathy. New England Journal of Medicine, 2014, 371, 2277-2287.	27.0	729
33	Evaluation of Anti-PLA2R1 as Measured by a Novel ELISA in Patients With Idiopathic Membranous Nephropathy. American Journal of Clinical Pathology, 2014, 142, 29-34.	0.7	67
34	Glomerular Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1138-1140.	4.5	14
35	Membranous nephropathy: from models to man. Journal of Clinical Investigation, 2014, 124, 2307-2314.	8.2	141
36	Aln-CC5, an Investigational RNAi Therapeutic Targeting C5 for Complement Inhibition. Blood, 2014, 124, 1606-1606.	1.4	12

#	Article	IF	CITATIONS
37	Introduction: Complement-Mediated Kidney Diseases. Seminars in Nephrology, 2013, 33, 477-478.	1.6	2
38	Anti–Phospholipase A2 Receptor Antibodies and Malignancy in Membranous Nephropathy. American Journal of Kidney Diseases, 2013, 62, 1223-1225.	1.9	55
39	Genetic Variants in Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2013, 24, 525-528.	6.1	38
40	Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum–induced glomerulonephritis. Kidney International, 2013, 84, 950-961.	5.2	48
41	IgC4-Related Disease Is Not Associated with Antibody to the Phospholipase A2 Receptor. International Journal of Rheumatology, 2012, 2012, 1-6.	1.6	39
42	Coexistence of ANCA-associated glomerulonephritis and anti-phospholipase A2 receptor antibody-positive membranous nephropathy. CKJ: Clinical Kidney Journal, 2012, 5, 162-165.	2.9	14
43	Inhibitory Effects of Robo2 on Nephrin: A Crosstalk between Positive and Negative Signals Regulating Podocyte Structure. Cell Reports, 2012, 2, 52-61.	6.4	53
44	Coexistence of ANCA-associated glomerulonephritis and anti-phospholipase A2 receptor antibody-positive membranous nephropathy. CKJ: Clinical Kidney Journal, 2012, 5, 162-165.	2.9	10
45	Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. Journal of Clinical Investigation, 2012, 122, 674-692.	8.2	92
46	Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nature Medicine, 2011, 17, 1242-1250.	30.7	204
47	Noninvasive Assessment of Antenatal Hydronephrosis in Mice Reveals a Critical Role for Robo2 in Maintaining Anti-Reflux Mechanism. PLoS ONE, 2011, 6, e24763.	2.5	14
48	Membranous Nephropathy Associated With IgG4-Related Disease. American Journal of Kidney Diseases, 2011, 58, 272-275.	1.9	64
49	Anti-Phospholipase A2 Receptor Antibodies Correlate with Clinical Status in Idiopathic Membranous Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 1286-1291.	4.5	320
50	Targeting Complement C5 in Atypical Hemolytic Uremic Syndrome. Journal of the American Society of Nephrology: JASN, 2011, 22, 7-9.	6.1	22
51	Rituximab-Induced Depletion of Anti-PLA2R Autoantibodies Predicts Response in Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2011, 22, 1543-1550.	6.1	403
52	Anti-Phospholipase A2 Receptor Antibody in Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2011, 22, 1137-1143.	6.1	366
53	The fate of Notch-deficient nephrogenic progenitor cells during metanephric kidney development. Kidney International, 2011, 79, 1099-1112.	5.2	28
54	Blockade of the Kinin B1 Receptor Ameloriates Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2010, 21, 1157-1164.	6.1	47

#	Article	lF	CITATIONS
55	Goodpasture's Disease — New Secrets Revealed. New England Journal of Medicine, 2010, 363, 388-391.	27.0	22
56	Membranous nephropathy: recent travels and new roads ahead. Kidney International, 2010, 77, 765-770.	5.2	175
57	Methylation determines fibroblast activation and fibrogenesis in the kidney. Nature Medicine, 2010, 16, 544-550.	30.7	537
58	Treatment of Membranous Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 690-691.	6.1	15
59	M-Type Phospholipase A ₂ Receptor as Target Antigen in Idiopathic Membranous Nephropathy. New England Journal of Medicine, 2009, 361, 11-21.	27.0	1,870
60	In Search of the Elusive Membranous Nephropathy Antigen. Nephron Physiology, 2009, 112, p11-p12.	1.2	13
61	Lysophosphatidic acid and renal fibrosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 582-587.	2.4	78
62	Glomerular and Tubulointerstitial Diseases. Primary Care - Clinics in Office Practice, 2008, 35, 265-296.	1.6	11
63	Intravenous methylprednisolone or plasma exchange for adjunctive therapy of severe renal vasculitis?. Nature Clinical Practice Nephrology, 2008, 4, 14-15.	2.0	2
64	A Case of Atypical Light Chain Deposition Disease—Diagnosis and Treatment. Clinical Journal of the American Society of Nephrology: CJASN, 2007, 2, 858-867.	4.5	18
65	SRY-Related HMG Box 9 Regulates the Expression of Col4a2 through Transactivating Its Enhancer Element in Mesangial Cells. American Journal of Pathology, 2007, 170, 1854-1864.	3.8	29
66	New Approaches to the Treatment of Dense Deposit Disease. Journal of the American Society of Nephrology: JASN, 2007, 18, 2447-2456.	6.1	231
67	Inhibition of Histone Deacetylase Activates Side Population Cells in Kidney and Partially Reverses Chronic Renal Injury. Stem Cells, 2007, 25, 2469-2475.	3.2	51
68	Nephrin and podocin dissociate at the onset of proteinuria in experimental membranous nephropathy. Kidney International, 2005, 67, 2239-2253.	5.2	94
69	Experimental membranous nephropathy redux. American Journal of Physiology - Renal Physiology, 2005, 289, F660-F671.	2.7	110
70	Rapamycin Ameliorates Proteinuria-Associated Tubulointerstitial Inflammation and Fibrosis in Experimental Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2005, 16, 2063-2072.	6.1	146
71	Membranoproliferative Glomerulonephritis Type II (Dense Deposit Disease). Journal of the American Society of Nephrology: JASN, 2005, 16, 1392-1403.	6.1	354
72	Glomerular Disease Workshop. Journal of the American Society of Nephrology: JASN, 2005, 16, 3472-3476.	6.1	6

#	Article	IF	CITATIONS
73	Respective Roles of Decay-Accelerating Factor and CD59 in Circumventing Glomerular Injury in Acute Nephrotoxic Serum Nephritis. Journal of Immunology, 2004, 172, 2636-2642.	0.8	41
74	Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. Journal of Clinical Investigation, 2004, 114, 679-688.	8.2	185
75	Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. Journal of Clinical Investigation, 2004, 114, 679-688.	8.2	104
76	Role of nephrin in proteinuric renal diseases. Seminars in Immunopathology, 2003, 24, 423-439.	4.0	10
77	An outline of essential topics in glomerular pathophysiology, diagnosis, and treatment for nephrology trainees. American Journal of Kidney Diseases, 2003, 42, 395-418.	1.9	3
78	Complement mediates nephrin redistribution and actin dissociation in experimental membranous nephropathy. Kidney International, 2003, 64, 2072-2078.	5.2	60
79	Podocyte slit-diaphragm protein nephrin is linked to the actin cytoskeleton. American Journal of Physiology - Renal Physiology, 2002, 282, F585-F591.	2.7	101
80	Decay-Accelerating Factor Confers Protection Against Complement-Mediated Podocyte Injury in Acute Nephrotoxic Nephritis. Laboratory Investigation, 2002, 82, 563-569.	3.7	69
81	IL-15, a survival factor for kidney epithelial cells, counteracts apoptosis and inflammation during nephritis. Journal of Clinical Investigation, 2002, 109, 951-960.	8.2	70
82	Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. Journal of Clinical Investigation, 2002, 110, 239-246.	8.2	70
83	Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. Journal of Clinical Investigation, 2002, 110, 239-246.	8.2	48
84	Nephrin Dissociates from Actin, and Its Expression Is Reduced in Early Experimental Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2002, 13, 946-956.	6.1	98
85	IL-15, a survival factor for kidney epithelial cells, counteracts apoptosis and inflammation during nephritis. Journal of Clinical Investigation, 2002, 109, 951-960.	8.2	35
86	Aminopeptidase A: A nephritogenic target antigen of nephrotoxic serum. Kidney International, 2001, 59, 601-613.	5.2	49
87	Targeted deletion of CX3CR1 reveals a role for fractalkine in cardiac allograft rejection. Journal of Clinical Investigation, 2001, 108, 679-688.	8.2	145
88	Cloning of rat nephrin: Expression in developing glomeruli and in proteinuric states. Kidney International, 2000, 57, 1949-1961.	5.2	176
89	Authors' reply:. American Journal of Kidney Diseases, 2000, 36, 217-219.	1.9	0
90	Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin. Journal of Clinical Investigation, 2000, 105, 125-125.	8.2	0

#	Article	IF	CITATIONS
91	Complement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions. Kidney International, 1999, 55, 1763-1775.	5.2	76
92	ANCA: Fuel for the fire or the spark that ignites the flame?. Kidney International, 1999, 55, 1125-1127.	5.2	12
93	Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. Journal of Clinical Investigation, 1999, 104, 1549-1557.	8.2	145
94	Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin. Journal of Clinical Investigation, 1999, 104, 1559-1566.	8.2	154
95	Immune complex glomerulonephritis. Clinical and Experimental Nephrology, 1998, 2, 271-275.	1.6	4
96	Treatment of acute interstitial nephritis. Renal Failure, 1998, 20, 829-838.	2.1	7
97	Inhibition of Complement Regulation Is Key to the Pathogenesis of Active Heymann Nephritis. Journal of Experimental Medicine, 1998, 188, 1353-1358.	8.5	52
98	Renal immunology and pathology. Current Opinion in Nephrology and Hypertension, 1998, 7, 279-280.	2.0	0
99	Acute nephrotoxic serum nephritis in complement knockout mice: relative roles of the classical and alternate pathways in neutrophil recruitment and proteinuria. Nephrology Dialysis Transplantation, 1998, 13, 2799-2803.	0.7	77
100	Visceral Glomerular Epithelial Cell DNA Synthesis in Experimental and Human Membranous Disease. Nephron Experimental Nephrology, 1998, 6, 352-358.	2.2	6
101	Role of MCP-1 and RANTES in inflammation and progression to fibrosis during murine crescentic nephritis. Journal of Leukocyte Biology, 1997, 62, 676-680.	3.3	92
102	Renal immunology and pathology. Current Opinion in Nephrology and Hypertension, 1997, 6, 257-258.	2.0	0
103	RANTES and Monocyte Chemoattractant Protein–1 (MCP-1) Play an Important Role in the Inflammatory Phase of Crescentic Nephritis, but Only MCP-1 Is Involved in Crescent Formation and Interstitial Fibrosis. Journal of Experimental Medicine, 1997, 185, 1371-1380.	8.5	462
104	Slit diaphragm-reactive nephritogenic MAb 5-1-6 alters expression of ZO-1 in rat podocytes. American Journal of Physiology - Renal Physiology, 1997, 273, F984-F993.	2.7	37
105	Glomerular epithelial cell products stimulate mesangial cell proliferation in culture. Kidney International, 1997, 52, 733-741.	5.2	11
106	Intercellular adhesion molecule-1 deficiency prolongs survival and protects against the development of pulmonary inflammation during murine lupus Journal of Clinical Investigation, 1997, 100, 963-971.	8.2	51
107	Effects of omega-3 fatty acids on complement-mediated glomerular epithelial cell injury. Kidney International, 1996, 50, 1863-1871.	5.2	7
108	The effect of VH residues 6 and 23 on IgG3 cryoprecipitation and glomerular deposition. European Journal of Immunology, 1995, 25, 279-284.	2.9	29

#	Article	IF	CITATIONS
109	The nephritogenic immune response. Current Opinion in Nephrology and Hypertension, 1994, 3, 318-328.	2.0	1
110	The structural biology of glomerular epithelial cells in proteinuric diseases. Current Opinion in Nephrology and Hypertension, 1994, 3, 569-574.	2.0	32
111	Expression of type I collagen mRNA in glomeruli of rats with passive Heymann nephritis. Kidney International, 1993, 43, 121-127.	5.2	26
112	Fish oil has protective and therapeutic effects on proteinuria in passive Heymann nephritis. Kidney International, 1993, 43, 359-368.	5.2	31
113	Management of glomerular diseases of primary and secondary origin. Current Opinion in Nephrology and Hypertension, 1992, 1, 124-132.	2.0	2
114	Cytosolic calcium and protein kinase C reduce complement-mediated glomerular epithelial injury. Kidney International, 1990, 38, 803-811.	5.2	51
115	Case 41-1990. New England Journal of Medicine, 1990, 323, 1050-1061.	27.0	8
116	Heymann nephritis: Mechanisms of renal injury. Kidney International, 1989, 35, 976-984.	5.2	97
117	Anti-Fx1A produces complement-dependent cytotoxicity of glomerular epithelial cells. Kidney International, 1988, 34, 43-52.	5.2	95
118	Effect of diet, age and sex on the renal response to immune injury in the rat. Kidney International, 1988, 33, 561-570.	5.2	13
119	[38] Experimental glomerulonephritis. Methods in Enzymology, 1988, 162, 421-461.	1.0	123
120	Role of abnormally high transmural pressure in the permselectivity defect of glomerular capillary wall: a study in early passive Heymann nephritis Circulation Research, 1987, 61, 531-538.	4.5	128
121	Immunopathogenesis of crescentic glomerulonephritis and lung purpura. Kidney International, 1987, 32, 408-425.	5.2	63
122	Charge selective properties of the glomerular capillary wall influence antibody binding in rat membranous nephropathy. Clinical Immunology and Immunopathology, 1986, 39, 131-138.	2.0	12
123	Complement-induced glomerular epithelial cell injury. Role of the membrane attack complex in rat membranous nephropathy Journal of Clinical Investigation, 1986, 77, 1096-1107.	8.2	159
124	Quantitation of exogenous and endogenous components of glomerular immune deposits. Kidney International, 1986, 30, 255-263.	5.2	12
125	Antibody, antigen, and glomerular capillary wall charge interactions: Influence of antigen location on in situ immune complex formation. Kidney International, 1986, 29, 649-657.	5.2	12
126	Anuric Renal Failure Precipitated by Indomethacin and Triamterene. Nephron, 1985, 40, 216-218.	1.8	37

#	Article	IF	CITATIONS
127	Influence of antigen distribution on the mediation of immunological glomerular injury. Kidney International, 1985, 27, 938-950.	5.2	47
128	Role of terminal complement pathway in the heterologous phase of antiglomerular basement membrane nephritis. Kidney International, 1985, 27, 643-651.	5.2	58
129	Effect of antibody charge and concentration on deposition of antibody to glomerular basement membrane. Kidney International, 1984, 26, 397-403.	5.2	25
130	Comparative study of in situ immune deposit formation in active and passive Heymann nephritis. Kidney International, 1983, 23, 498-505.	5.2	34
131	Mediation of proteinuria in membranous nephropathy due to a planted glomerular antigen. Kidney International, 1983, 23, 807-815.	5.2	50
132	Role of the terminal complement pathway in experimental membranous nephropathy in the rabbit Journal of Clinical Investigation, 1983, 72, 1948-1957.	8.2	95
133	Altered glomerular permeability induced by F(ab′)2 and Fab′ antibodies to rat renal tubular epithelial antigen. Kidney International, 1982, 21, 36-43.	5.2	28
134	In situ immune complex formation and glomerular injury. Kidney International, 1980, 17, 1-13.	5.2	328
135	Experimental Membranous Glomerulonephritis in Rats. Journal of Clinical Investigation, 1980, 66, 71-81.	8.2	157
136	A new role for complement in experimental membranous nephropathy in rats Journal of Clinical Investigation, 1980, 66, 1339-1350.	8.2	280
137	Analgesic abuse and microvascular changes. American Heart Journal, 1978, 95, 268-269.	2.7	6
138	Experimental glomerulonephritis in the isolated perfused rat kidney Journal of Clinical Investigation, 1978, 62, 1275-1287.	8.2	351