Yaroslav Losovyj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4246673/publications.pdf

Version: 2024-02-01

26 papers 5,032 citations

16 h-index 26 g-index

26 all docs

 $\begin{array}{c} 26 \\ \text{docs citations} \end{array}$

times ranked

26

10630 citing authors

#	Article	IF	Citations
1	Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519-522.	6.0	4,156
2	Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2016, 55, 10027-10031.	7.2	158
3	A low spin manganese(<scp>iv</scp>) nitride single molecule magnet. Chemical Science, 2016, 7, 6132-6140.	3.7	112
4	The unique chemistry of thiuram polysulfides enables energy dense lithium batteries. Journal of Materials Chemistry A, 2017, 5, 25005-25013.	5.2	71
5	Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nature Communications, 2019, 10, 1394.	5.8	64
6	A flexible, redox-active macrocycle enables the electrocatalytic reduction of nitrate to ammonia by a cobalt complex. Chemical Science, 2018, 9, 4950-4958.	3.7	63
7	Graphite Conjugation of a Macrocyclic Cobalt Complex Enhances Nitrite Electroreduction to Ammonia. Journal of the American Chemical Society, 2021, 143, 7203-7208.	6.6	54
8	Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols. ACS Applied Materials & Enterfaces, 2016, 8, 21285-21293.	4.0	51
9	Structural and spectroscopic characterization of an Fe(VI) bis(imido) complex. Science, 2020, 370, 356-359.	6.0	40
10	Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores. ACS Nano, 2019, 13, 4008-4017.	7.3	37
11	Polythiophene Thin Films by Surface-Initiated Polymerization: Mechanistic and Structural Studies. Chemistry of Materials, 2016, 28, 4787-4804.	3.2	23
12	Evidence for Quinone Redox Chemistry Mediating Daytime and Nighttime NO ₂ -to-HONO Conversion on Soil Surfaces. Environmental Science & Envir	4.6	23
13	Large-size niobium disulfide nanoflakes down to bilayers grown by sulfurization. Nano Research, 2018, 11, 5978-5988.	5.8	21
14	Strong π-Backbonding Enables Record Magnetic Exchange Coupling Through Cyanide. Journal of the American Chemical Society, 2019, 141, 17092-17097.	6.6	21
15	Partial Nitrogen Atom Transfer: A New Synthetic Tool to Design Single-Molecule Magnets. Inorganic Chemistry, 2015, 54, 9075-9080.	1.9	20
16	Facile Synthesis of Magnetically Recoverable Pd and Ru Catalysts for 4-Nitrophenol Reduction: Identifying Key Factors. ACS Omega, 2018, 3, 14717-14725.	1.6	20
17	Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries. Angewandte Chemie, 2016, 128, 10181-10185.	1.6	19
18	Efficient Furfuryl Alcohol Synthesis from Furfural over Magnetically Recoverable Catalysts: Does the Catalyst Stabilizing Medium Matter?. ChemistrySelect, 2017, 2, 5485-5491.	0.7	16

#	Article	IF	CITATIONS
19	Silica–Conjugated Polymer Hybrid Fluorescent Nanoparticles: Preparation by Surface-Initiated Polymerization and Spectroscopic Studies. Journal of Physical Chemistry C, 2018, 122, 6963-6975.	1.5	14
20	Zn ²⁺ Ion Surface Enrichment in Doped Iron Oxide Nanoparticles Leads to Charge Carrier Density Enhancement. ACS Omega, 2018, 3, 16328-16337.	1.6	13
21	pH-Induced Surface Modification of Atomically Precise Silver Nanoclusters: An Approach for Tunable Optical and Electronic Properties. Inorganic Chemistry, 2016, 55, 11522-11528.	1.9	10
22	Rotationally Free and Rigid Sublattices of the Single Crystal Perovskite CH ₃ NH ₃ PbBr ₃ (001): The Case of the Lattice Polar Liquid. Journal of Physical Chemistry C, 2018, 122, 25506-25514.	1.5	8
23	Seeking Redox Activity in a Tetrazinyl Pincer Ligand: Installing Zerovalent Cr and Mo. Inorganic Chemistry, 2018, 57, 12671-12682.	1.9	7
24	C–F Bond Activation in the Solid State: Functionalization of Carbon through Reactions of Graphite Fluoride with Amines. Journal of Physical Chemistry C, 2021, 125, 10326-10333.	1.5	6
25	Self-organization of various "phase-separated―nanostructures in a single chemical vapor deposition. Nano Research, 2020, 13, 1723-1732.	5.8	3
26	Cyanographite. Journal of Physical Chemistry C, 2022, 126, 3001-3008.	1.5	2