Ze Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4246429/publications.pdf Version: 2024-02-01

		50276	56724
133	7,476	46	83
papers	citations	h-index	g-index
143	143	143	6486
all docs	docs citations	times ranked	citing authors

ZE CHANC

#	Article	IF	CITATIONS
1	Pyrazineâ€interiorâ€embodied <scp>MOF</scp> â€74 for selective <scp>CO₂</scp> adsorption. AICHE Journal, 2022, 68, e17528.	3.6	11
2	Acetylene storage performance of [Ni(4,4′-bipyridine) ₂ (NCS) ₂] _{<i>n</i>} , a switching square lattice coordination network. Chemical Communications, 2022, 58, 1534-1537.	4.1	6
3	Modulation of Hierarchical Pores in Metal–Organic Frameworks for Improved Dye Adsorption and Electrocatalytic Performance. Inorganic Chemistry, 2022, 61, 5800-5812.	4.0	5
4	Manipulating spatial alignment of donor and acceptor in host–guest MOF for TADF. National Science Review, 2022, 9, .	9.5	19
5	Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nature Materials, 2022, 21, 689-695.	27.5	109
6	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, .	21.0	82
7	Programmable assembly of multiple donor-acceptor systems in metal-organic framework for heterogeneity manipulation and functions integration. Matter, 2022, 5, 2918-2932.	10.0	10
8	2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. Chemical Engineering Journal, 2021, 405, 126638.	12.7	21
9	Metal-organic materials with triazine-based ligands: From structures to properties and applications. Coordination Chemistry Reviews, 2021, 427, 213518.	18.8	29
10	Two porous Ni-MOFs based on 2,4,6-tris(pyridin-4-yl)-1,3,5-triazine showing solvent determined structures and distinctive sorption properties toward CO ₂ and alkanes. Dalton Transactions, 2021, 50, 5244-5250.	3.3	4
11	Self-Interpenetrated Water-Stable Microporous Metal–Organic Framework toward Storage and Purification of Light Hydrocarbons. Inorganic Chemistry, 2021, 60, 2749-2755.	4.0	26
12	Functionalizing MOF with Redox-Active Tetrazine Moiety for Improving the Performance as Cathode of Li–O ₂ Batteries. CCS Chemistry, 2021, 3, 1297-1305.	7.8	21
13	Defective Hierarchical Pore Engineering of a Zn–Ni MOF by Labile Coordination Bonding Modulation. Inorganic Chemistry, 2021, 60, 5122-5130.	4.0	19
14	High Working Capacity Acetylene Storage at Ambient Temperature Enabled by a Switching Adsorbent Layered Material. ACS Applied Materials & Interfaces, 2021, 13, 23877-23883.	8.0	17
15	Single-Crystal to Single-Crystal Transformation of Metal–Organic Framework Nanoparticles for Encapsulation and pH-Stimulated Release of Camptothecin. ACS Applied Nano Materials, 2021, 4, 7191-7198.	5.0	9
16	Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2103597.	14.9	68
17	Post-synthetic modification of tetrazine functionalized porous MOF for CO2 sorption performances modulation. Journal of Solid State Chemistry, 2021, 300, 122257.	2.9	8
18	A metal–organic framework featuring highly sensitive fluorescence sensing for Al ³⁺ ions. CrystEngComm, 2021, 23, 8087-8092.	2.6	14

#	Article	IF	CITATIONS
19	Functionalized Dynamic Metal–Organic Frameworks as Smart Switches for Sensing and Adsorption Applications. Topics in Current Chemistry, 2020, 378, 5.	5.8	14
20	Structural tuning of Zn(<scp>ii</scp>)-MOFs based on pyrazole functionalized carboxylic acid ligands for organic dye adsorption. CrystEngComm, 2020, 22, 5941-5945.	2.6	13
21	Highly stable Zn-MOF with Lewis basic nitrogen sites for selective sensing of Fe ³⁺ and Cr ₂ O ₇ ^{2â^'} ions in aqueous systems. Journal of Coordination Chemistry, 2020, 73, 2718-2727.	2.2	17
22	Metal–Organicâ€Frameworkâ€Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting. Advanced Materials, 2020, 32, e2004747.	21.0	142
23	Efficient Regulation of Energy Transfer in a Multicomponent Dye-Loaded MOF for White-Light Emission Tuning. ACS Applied Materials & Interfaces, 2020, 12, 51589-51597.	8.0	52
24	Structural Transformation and Spatial Defect Formation of a Co(II) MOF Triggered by Varied Metal-Center Coordination Configuration. Inorganic Chemistry, 2020, 59, 9005-9013.	4.0	19
25	Crystal engineering of a rectangular sql coordination network to enable xylenes selectivity over ethylbenzene. Chemical Science, 2020, 11, 6889-6895.	7.4	26
26	Zinc-coordination Polymers Based on a Donor-acceptor Mix-ligand System: Syntheses, Crystal Structures and Photophysical Properties. Chemical Research in Chinese Universities, 2020, 36, 74-80.	2.6	6
27	Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance. Separation and Purification Technology, 2019, 210, 258-267.	7.9	31
28	Innenrücktitelbild: Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation (Angew. Chem. 39/2019). Angewandte Chemie, 2019, 131, 14135-14135.	2.0	1
29	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie, 2019, 131, 14028-14034.	2.0	23
30	Enhanced Gas Uptake in a Microporous Metal–Organic Framework <i>via</i> a Sorbate Induced-Fit Mechanism. Journal of the American Chemical Society, 2019, 141, 17703-17712.	13.7	152
31	Two luminescent coordination polymers as highly selective and sensitive chemosensors for Cr ^{VI} -anions in aqueous medium. Dalton Transactions, 2019, 48, 387-394.	3.3	87
32	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie - International Edition, 2019, 58, 13890-13896.	13.8	108
33	Rational Construction of Breathing Metal–Organic Frameworks through Synergy of a Stretchy Ligand and Highly Variable ï€â€"ï€ Interaction. ACS Applied Materials & Interfaces, 2019, 11, 20995-21003.	8.0	13
34	CO 2 Capture: Specific K + Binding Sites as CO 2 Traps in a Porous MOF for Enhanced CO 2 Selective Sorption (Small 22/2019). Small, 2019, 15, 1970118.	10.0	3
35	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	4.9	28
36	Soft Porous Crystal Based upon Organic Cages That Exhibit Guest-Induced Breathing and Selective Gas Separation. Journal of the American Chemical Society, 2019, 141, 9408-9414.	13.7	98

#	Article	IF	CITATIONS
37	Facile synthesis of ZnS and derived quantum dots from ZIF-8 precursor: Synthesis, characterization and optical properties. Journal of Solid State Chemistry, 2019, 276, 159-163.	2.9	12
38	An insight into the pyrolysis process of metal–organic framework templates/precursors to construct metal oxide anode materials for lithium-ion batteries. Materials Chemistry Frontiers, 2019, 3, 1398-1405.	5.9	15
39	Specific K ⁺ Binding Sites as CO ₂ Traps in a Porous MOF for Enhanced CO ₂ Selective Sorption. Small, 2019, 15, e1900426.	10.0	67
40	A New Biscarbazoleâ€Based Metal–Organic Framework for Efficient Host–Guest Energy Transfer. Chemistry - A European Journal, 2019, 25, 1901-1905.	3.3	16
41	Structure and Emission Modulation of a Series of Cd(II) Luminescent Coordination Polymers through Guest Dependent Donor–Acceptor Interaction. Crystal Growth and Design, 2019, 19, 1391-1398.	3.0	27
42	Facile synthesis of Co ₃ O ₄ nanosheets from MOF nanoplates for high performance anodes of lithium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1602-1608.	6.0	47
43	Targeted Construction of Light-Harvesting Metal–Organic Frameworks Featuring Efficient Host–Guest Energy Transfer. ACS Applied Materials & Interfaces, 2018, 10, 5633-5640.	8.0	47
44	Enhanced dehydration performance of hybrid membranes by incorporating lanthanide-based MOFs. Journal of Membrane Science, 2018, 546, 31-40.	8.2	26
45	Enhancing the stability and porosity of penetrated metal–organic frameworks through the insertion of coordination sites. Chemical Science, 2018, 9, 950-955.	7.4	34
46	PAN@ZIF-67-Derived "Gypsophila―Like CNFs@Co-CoO Composite as a Cathode for Li–O ₂ Batteries. Inorganic Chemistry, 2018, 57, 14476-14479.	4.0	22
47	Rational Construction of Highly Tunable Donor–Acceptor Materials Based on a Crystalline Host–Guest Platform. Advanced Materials, 2018, 30, e1804715.	21.0	132
48	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	6.0	38
49	Supramolecular recognition of benzene homologues in a 2D coordination polymer through variable inter-layer π–π interaction. CrystEngComm, 2018, 20, 3313-3317.	2.6	12
50	A novel double-walled Cd(II) metal–organic framework as highly selective luminescent sensor for Cr2O72â^' anion. Polyhedron, 2018, 153, 110-114.	2.2	21
51	Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coordination Chemistry Reviews, 2018, 375, 558-586.	18.8	93
52	Guest dependent structure and acetone sensing properties of a 2D Eu ³⁺ coordination polymer. RSC Advances, 2017, 7, 2258-2263.	3.6	39
53	Why Porous Materials Have Selective Adsorptions: A Rational Aspect from Electrodynamics. Inorganic Chemistry, 2017, 56, 2614-2620.	4.0	12
54	Host–Guest Engineering of Coordination Polymers for Highly Tunable Luminophores Based on Charge Transfer Emissions. ACS Applied Materials & Interfaces, 2017, 9, 2662-2668.	8.0	65

#	Article	IF	CITATIONS
55	Kinetic and Thermodynamic Control of Structure Transformations in a Family of Cobalt(II)–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 35141-35149.	8.0	14
56	Impact of the flexibility of pillar linkers on the structure and CO 2 adsorption property of "pillar-layered―MOFs. Chinese Chemical Letters, 2017, 28, 55-59.	9.0	14
57	Tricarboxylate-based Gd ^{III} coordination polymers exhibiting large magnetocaloric effects. Dalton Transactions, 2016, 45, 9209-9215.	3.3	106
58	A four-fold interpenetrated metal–organic framework as a fluorescent sensor for volatile organic compounds. Dalton Transactions, 2016, 45, 14888-14892.	3.3	56
59	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie, 2016, 128, 15251-15254.	2.0	16
60	Enhancement of gas-framework interaction in a metal–organic framework by cavity modification. Science Bulletin, 2016, 61, 1255-1259.	9.0	18
61	A Water-Stable Metal–Organic Framework with a Double-Helical Structure for Fluorescent Sensing. Inorganic Chemistry, 2016, 55, 7326-7328.	4.0	83
62	A Rigid Nested Metal–Organic Framework Featuring a Thermoresponsive Gating Effect Dominated by Counterions. Angewandte Chemie - International Edition, 2016, 55, 15027-15030.	13.8	166
63	Cluster- and chain-based magnetic MOFs derived from 3d metal ions and 1,3,5-benzenetricarboxylate. New Journal of Chemistry, 2016, 40, 2680-2686.	2.8	12
64	Construction of a polyhedron decorated MOF with a unique network through the combination of two classic secondary building units. Chemical Communications, 2016, 52, 2079-2082.	4.1	36
65	Structural stabilization of a metal–organic framework for gas sorption investigation. Dalton Transactions, 2016, 45, 6830-6833.	3.3	21
66	Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand. Dalton Transactions, 2016, 45, 7866-7874.	3.3	10
67	Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications. Advanced Materials, 2015, 27, 5432-5441.	21.0	470
68	A three dimensional magnetically frustrated metal–organic framework <i>via</i> the vertices augmentation of underlying net. Chemical Communications, 2015, 51, 4627-4630.	4.1	31
69	A new anionic metal–organic framework showing tunable emission by lanthanide(III) doping and highly selective CO ₂ adsorption properties. RSC Advances, 2015, 5, 24655-24660.	3.6	9
70	A unique "cage-in-cage―metal–organic framework based on nested cages from interpenetrated networks. CrystEngComm, 2015, 17, 5884-5888.	2.6	15
71	Topological modulation of metal–thiadiazole dicarboxylate coordination polymers through auxiliary ligand alteration. CrystEngComm, 2015, 17, 4301-4308.	2.6	10
72	A heterometallic strategy to achieve a large magnetocaloric effect in polymeric 3d complexes. Chemical Communications, 2015, 51, 8288-8291.	4.1	33

#	Article	IF	CITATIONS
73	Crystalline Capsules: Metal–Organic Frameworks Locked by Sizeâ€Matching Ligand Bolts. Angewandte Chemie - International Edition, 2015, 54, 5966-5970.	13.8	135
74	A triphenylene-based conjugated microporous polymer: construction, gas adsorption, and fluorescence detection properties. RSC Advances, 2015, 5, 15350-15353.	3.6	14
75	A flexible zwitterion ligand based lanthanide metal–organic framework for luminescence sensing of metal ions and small molecules. Dalton Transactions, 2015, 44, 10914-10917.	3.3	124
76	Perspectives on Electron-Assisted Reduction for Preparation of Highly Dispersed Noble Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 3-13.	6.7	91
77	Two luminescent metal–organic frameworks for the sensing of nitroaromatic explosives and DNA strands. Journal of Materials Chemistry A, 2014, 2, 2213-2220.	10.3	247
78	Step-by-step synthesis of one Fe ₆ wheel and two Fe ₁₀ clusters derived from a multidentate triethanolamine ligand. CrystEngComm, 2014, 16, 5212-5215.	2.6	15
79	Li-ion storage and gas adsorption properties of porous polyimides (PIs). RSC Advances, 2014, 4, 7506.	3.6	91
80	Two coordination polymers with enhanced ligand-centered luminescence and assembly imparted sensing ability for acetone. Journal of Materials Chemistry A, 2014, 2, 9469.	10.3	78
81	Two Mg(II) coordination polymers based on the flexible carboxylic ligands: Synthesis, crystal structures, luminescent and adsorption properties. Inorganic Chemistry Communication, 2014, 49, 131-135.	3.9	7
82	Pillared Metal–Organic Frameworks Based on 6 ³ Layers: Structure Modulation and Sorption Properties. Crystal Growth and Design, 2014, 14, 5189-5195.	3.0	25
83	A luminescent metal–organic framework demonstrating ideal detection ability for nitroaromatic explosives. Journal of Materials Chemistry A, 2014, 2, 1465-1470.	10.3	396
84	A new Co-based metal–organic framework constructed from infinite sinusoidal-like rod-shaped secondary building units. Inorganic Chemistry Communication, 2014, 47, 67-70.	3.9	4
85	Zn(II)-Benzotriazolate Clusters Based Amide Functionalized Porous Coordination Polymers with High CO ₂ Adsorption Selectivity. Inorganic Chemistry, 2014, 53, 8842-8844.	4.0	62
86	A Mixed Molecular Building Block Strategy for the Design of Nested Polyhedron Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 837-841.	13.8	189
87	Luminescent pillared LnIII–ZnII heterometallic coordination frameworks with two kinds of N-heterocyclic carboxylate ligands. Journal of Solid State Chemistry, 2014, 212, 58-63.	2.9	16
88	Targeted Structure Modulation of "Pillar-Layered―Metal–Organic Frameworks for CO2 Capture. Inorganic Chemistry, 2014, 53, 8985-8990.	4.0	82
89	A polypyridyl-pyrene based off-on Cd2+ fluorescent sensor for aqueous phase analysis and living cell imaging. Talanta, 2014, 128, 278-283.	5.5	25
90	A fluorescent and colorimetric sensor for Al3+ based on a dibenzo-18-crown-6 derivative. Inorganic Chemistry Communication, 2013, 33, 6-9.	3.9	28

#	Article	IF	CITATIONS
91	A Cu(i) metal–organic framework with 4-fold helical channels for sensing anions. Chemical Science, 2013, 4, 3678.	7.4	251
92	A luminescent 2D coordination polymer for selective sensing of nitrobenzene. Dalton Transactions, 2013, 42, 12865.	3.3	236
93	Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities. Scientific Reports, 2013, 3, 3312.	3.3	136
94	A Controllable Gate Effect in Cobalt(II) Organic Frameworks by Reversible Structure Transformations. Angewandte Chemie - International Edition, 2013, 52, 11550-11553.	13.8	302
95	Two new indole derivatives as anion receptors for detecting fluoride ion. Chinese Chemical Letters, 2013, 24, 962-966.	9.0	16
96	A new ditopic ratiometric receptor for detecting zinc and fluoride ions in living cells. Analyst, The, 2013, 138, 5486.	3.5	51
97	Chiral uranyl-organic compounds assembled with achiral furandicarboxylic acid by spontaneous resolution. Chemical Communications, 2013, 49, 6659.	4.1	44
98	Edge-directed assembly of a 3D 2p–3d heterometallic metal–organic framework based on a cubic Co8(TzDC)12 cage. CrystEngComm, 2013, 15, 9344.	2.6	15
99	Mn(ii) metal–organic frameworks based on Mn3 clusters: from 2D layer to 3D framework by the "pillaring―approach. CrystEngComm, 2013, 15, 1613.	2.6	60
100	A 1D polyoxometalate chain built from {Mo16Ni16P24} wheels: Synthesis, structure and magnetism. Inorganic Chemistry Communication, 2013, 28, 70-74.	3.9	5
101	A new 8-connected self-penetrating metal–organic framework based on dinuclear cadmium clusters as secondary building units. Chinese Chemical Letters, 2013, 24, 691-694.	9.0	6
102	Microporous organic polymers for gas storage and separation applications. Physical Chemistry Chemical Physics, 2013, 15, 5430.	2.8	181
103	A μ3-OHâ^' bridged two-dimensional zinc(II) coordination polymer based on an anthryl ligand: Synthesis, characterization and luminescent properties. Chinese Chemical Letters, 2013, 24, 270-272.	9.0	3
104	Tuning the Structure and Magnetism of Heterometallic Sodium(1+)–Cobalt(2+) Formate Coordination Polymers by Varying the Metal Ratio and Solvents. Inorganic Chemistry, 2013, 52, 2862-2869.	4.0	60
105	Syntheses, structures and magnetic properties of three Co(II) coordination architectures based on a flexible multidentate carboxylate ligand and different N-donor ligands. Science China Chemistry, 2013, 56, 1693-1700.	8.2	9
106	A unique substituted Co(ii)-formate coordination framework exhibits weak ferromagnetic single-chain-magnet like behavior. Chemical Communications, 2012, 48, 6568.	4.1	88
107	Preparation of ferrocene immobilized metal–organic-framework modified electrode for the determination of acetaminophen. Analytical Methods, 2012, 4, 4037.	2.7	24
108	Construction and adsorption properties of microporous tetrazine-based organic frameworks. RSC Advances, 2012, 2, 408-410.	3.6	46

#	Article	IF	CITATIONS
109	Cadmium(II) and lanthanum(III) coordination architectures with anthracene-9,10-dicarboxylate: Crystal structures and photoluminescent properties. Inorganica Chimica Acta, 2012, 385, 58-64.	2.4	7
110	Rational Construction of 3D Pillared Metal–Organic Frameworks: Synthesis, Structures, and Hydrogen Adsorption Properties. Inorganic Chemistry, 2011, 50, 7555-7562.	4.0	112
111	Microporous Metal–Organic Framework Based on Supermolecular Building Blocks (SBBs): Structure Analysis and Selective Gas Adsorption Properties. Crystal Growth and Design, 2011, 11, 2050-2053.	3.0	66
112	Zinc(II) Complexes with a Versatile Multitopic Tetrazolate-Based Ligand Showing Various Structures: Impact of Reaction Conditions on the Final Product Structures. Inorganic Chemistry, 2011, 50, 10994-11003.	4.0	46
113	Three interpenetrated copper(II) coordination polymers based on a V-shaped ligand: Synthesis, structures, sorption and magnetic properties. Science China Chemistry, 2011, 54, 1446-1453.	8.2	13
114	Synthesis, structure and properties of microporous metal–organic frameworks constructed from Ni(II)/Cd(II), Tpt and H4bpta. Inorganic Chemistry Communication, 2011, 14, 1082-1085.	3.9	18
115	Copper(II) complexes with monocarboxylate ligands bearing different substituent groups: Synthesis and spectroscopic studies. Inorganica Chimica Acta, 2010, 363, 1377-1385.	2.4	28
116	Co(en)3 1/3[In(ox)2]·3.5H2O: A zeolitic metal-organic framework templated by Co(en)3Cl3. Microporous and Mesoporous Materials, 2010, 132, 453-457.	4.4	42
117	Cadmium(II) Complexes with a Bulky Anthraceneâ€based Carboxylate Ligand: Syntheses, Crystal Structures, and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1115-1123.	1.2	7
118	Cadmium(ii) coordination polymers based on a bulky anthracene-based dicarboxylate ligand: crystal structures and luminescent properties. CrystEngComm, 2010, 12, 1833.	2.6	50
119	Zn ^{II} and Hg ^{II} Complexes with 2,3-Substituted-5,6-di(1 <i>H</i> -tetrazol-5-yl)pyrazine Ligands: Roles of Substituting Groups and Synthetic Conditions on the Formation of Complexes. Crystal Growth and Design, 2010, 10, 564-574.	3.0	21
120	Three-Dimensional Porous Metalâ^'Organic Frameworks Exhibiting Metamagnetic Behaviors: Synthesis, Structure, Adsorption, and Magnetic Properties. Inorganic Chemistry, 2010, 49, 4301-4306.	4.0	49
121	New Three-Dimensional Porous Metal Organic Framework with Tetrazole Functionalized Aromatic Carboxylic Acid: Synthesis, Structure, and Gas Adsorption Properties. Inorganic Chemistry, 2010, 49, 11581-11586.	4.0	133
122	Two manganese(II) complexes based on anthracene-9-carboxylate: Syntheses, crystal structures, and magnetic properties. Transition Metal Chemistry, 2009, 34, 51-60.	1.4	14
123	Silver(I) Complexes with a Bulky Anthraceneâ€Based Dicarboxylic Ligand: Syntheses, Crystal Structures, and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 523-529.	1.2	19
124	Zinc(II) and mercury(II) coordination architectures with two pyridyl/benzimidazol-1-yl-based ligands: Crystal structures and photoluminescent properties. Inorganica Chimica Acta, 2009, 362, 3147-3154.	2.4	6
125	Zn ^{II} Coordination Poylmers Based on 2,3,6,7-Anthracenetetracarboxylic Acid: Synthesis, Structures, and Luminescence Properties. Crystal Growth and Design, 2009, 9, 4840-4846.	3.0	103
126	A photoluminescent hexanuclear silver(I) complex exhibiting C–Hâ‹⁻Ag close interactions. Inorganic Chemistry Communication, 2008, 11, 159-163.	3.9	58

#	Article	IF	CITATIONS
127	A photoluminescent 3D silver(I) coordination polymer with mixed ligands anthracene-9,10-dicarboxylate and hexamethylenetetramine, showing binodal 4-connected (43·63)2(42·62·82)3 topology. Inorganic Chemistry Communication, 2008, 11, 889-892.	3.9	38
128	Two new Cu(II) complexes with 3-(2-pyridyl)pyrazol-based ligands: Synthesis, crystal structures, and magnetic properties. Journal of Molecular Structure, 2008, 875, 160-166.	3.6	4
129	Zinc(ii) coordination architectures with two bulky anthracene-based carboxylic ligands: crystal structures and luminescent properties. CrystEngComm, 2008, 10, 681.	2.6	102
130	Manganese(II) Complexes with a Bulky Anthracene-Based Dicarboxylic Ligand: Syntheses, Crystal Structures, and Magnetic Properties. Australian Journal of Chemistry, 2008, 61, 382.	0.9	19
131	Tetrakis(μ-anthracene-9-carboxylato)bis[(anthracene-9-carboxylato)(2,2â€2-bipyridyl)lanthanum(III)]. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m15-m16.	0.2	7
132	Copper(II), Cobalt(II), and Nickel(II) Complexes with a Bulky Anthracene-Based Carboxylic Ligand: Syntheses, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2007, 46, 6299-6310.	4.0	142
133	catena-Poly[[aquacopper(II)]-ι⁄4-hydroxido-ι⁄4-naphthalene-1-carboxylato-κ2O:O′]: effect of a bulky aromatic skeleton in self-assembly. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, m589-m591.	0.4	0