Eduardo MarbÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4245505/publications.pdf

Version: 2024-02-01

11651 8866 21,983 191 70 citations h-index papers

g-index 199 199 199 17430 docs citations times ranked citing authors all docs

145

#	Article	IF	CITATIONS
1	Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, The, 2012, 379, 895-904.	13.7	1,294
2	Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens. Circulation, 2007, 115, 896-908.	1.6	1,074
3	Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction. Circulation, 2007, 115, 2006-2014.	1.6	790
4	Mitochondrial ATP-Dependent Potassium Channels. Circulation, 1998, 97, 2463-2469.	1.6	781
5	c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature, 2014, 509, 337-341.	27.8	723
6	Exosomes as Critical Agents of Cardiac Regeneration Triggered by Cell Therapy. Stem Cell Reports, 2014, 2, 606-619.	4.8	705
7	Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice. Circulation Research, 2010, 106, 971-980.	4.5	609
8	COVID-19 and the Heart. Circulation Research, 2020, 126, 1443-1455.	4.5	574
9	Intracoronary Cardiosphere-Derived Cells After Myocardial Infarction. Journal of the American College of Cardiology, 2014, 63, 110-122.	2.8	468
10	Functional Integration of Electrically Active Cardiac Derivatives From Genetically Engineered Human Embryonic Stem Cells With Quiescent Recipient Ventricular Cardiomyocytes. Circulation, 2005, 111, 11-20.	1.6	455
11	Direct Comparison of Different Stem Cell Types and Subpopulations Reveals Superior Paracrine Potency and Myocardial Repair Efficacy With Cardiosphere-Derived Cells. Journal of the American College of Cardiology, 2012, 59, 942-953.	2.8	427
12	Biological pacemaker created by gene transfer. Nature, 2002, 419, 132-133.	27.8	421
13	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
14	Engraftment, Differentiation, and Functional Benefits of Autologous Cardiosphere-Derived Cells in Porcine Ischemic Cardiomyopathy. Circulation, 2009, 120, 1075-1083.	1.6	383
15	Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. European Heart Journal, 2017, 38, ehw240.	2.2	374
16	Role of Troponin I Proteolysis in the Pathogenesis of Stunned Myocardium. Circulation Research, 1997, 80, 393-399.	4.5	347
17	Cardiac channelopathies. Nature, 2002, 415, 213-218.	27.8	334
18	Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nature Cell Biology, 2001, 3, 867-873.	10.3	295

#	Article	IF	CITATIONS
19	Assessment and Optimization of Cell Engraftment After Transplantation Into the Heart. Circulation Research, 2010, 106, 479-494.	4.5	291
20	Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nature Biotechnology, 2013, 31, 54-62.	17.5	274
21	Antiarrhythmic Engineering of Skeletal Myoblasts for Cardiac Transplantation. Circulation Research, 2005, 97, 159-167.	4.5	273
22	Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in Patients With Acute Myocardial Infarction Based on Individual Patient Data. Circulation Research, 2015, 116, 1346-1360.	4.5	270
23	Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Molecular Medicine, 2013, 5, 191-209.	6.9	268
24	Safety and Efficacy of Allogeneic Cell Therapy in Infarcted Rats Transplanted With Mismatched Cardiosphere-Derived Cells. Circulation, 2012, 125, 100-112.	1.6	262
25	Exosomal MicroRNA Transfer Into Macrophages Mediates Cellular Postconditioning. Circulation, 2017, 136, 200-214.	1.6	261
26	Validation of the Cardiosphere Method to Culture Cardiac Progenitor Cells from Myocardial Tissue. PLoS ONE, 2009, 4, e7195.	2.5	252
27	Noninvasive Quantification and Optimization of Acute Cell Retention by In Vivo Positron Emission Tomography After Intramyocardial Cardiac-Derived Stem Cell Delivery. Journal of the American College of Cardiology, 2009, 54, 1619-1626.	2.8	245
28	Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology. Annual Review of Physiology, 2016, 78, 67-83.	13.1	236
29	Cardiospheres Recapitulate a Niche-Like Microenvironment Rich in Stemness and Cell-Matrix Interactions, Rationalizing Their Enhanced Functional Potency for Myocardial Repair. Stem Cells, 2010, 28, 2088-2098.	3 . 2	232
30	Magnetic Targeting Enhances Engraftment and Functional Benefit of Iron-Labeled Cardiosphere-Derived Cells in Myocardial Infarction. Circulation Research, 2010, 106, 1570-1581.	4.5	226
31	Intramyocardial Injection of Autologous Cardiospheres or Cardiosphere-Derived Cells Preserves Function and Minimizes Adverse Ventricular Remodeling in Pigs With Heart Failure Post-Myocardial Infarction. Journal of the American College of Cardiology, 2011, 57, 455-465.	2.8	222
32	Roles of exosomes in cardioprotection. European Heart Journal, 2017, 38, ehw304.	2.2	213
33	Proarrhythmic Potential of Mesenchymal Stem Cell Transplantation Revealed in an In Vitro Coculture Model. Circulation, 2006, 113, 1832-1841.	1.6	204
34	Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nature Medicine, 2014, 20, 624-632.	30.7	203
35	Focal modification of electrical conduction in the heart by viral gene transfer. Nature Medicine, 2000, 6, 1395-1398.	30.7	197
36	Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. Journal of Clinical Investigation, 2015, 125, 3147-3162.	8.2	197

#	Article	IF	CITATIONS
37	Cardiac cell therapy: where we've been, where we are, and where we should be headed. British Medical Bulletin, 2011, 98, 161-185.	6.9	174
38	Y <scp>RNA</scp> fragment in extracellular vesicles confers cardioprotection via modulation of <scp>IL</scp> â€10 expression and secretion. EMBO Molecular Medicine, 2017, 9, 337-352.	6.9	171
39	Dedifferentiation and Proliferation of Mammalian Cardiomyocytes. PLoS ONE, 2010, 5, e12559.	2.5	166
40	Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. Journal of Nanobiotechnology, 2018, 16, 61.	9.1	161
41	Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Science Translational Medicine, 2014, 6, 245ra94.	12.4	151
42	Phenotypic Characterization of a Novel Long-QT Syndrome Mutation (R1623Q) in the Cardiac Sodium Channel. Circulation, 1998, 97, 640-644.	1.6	138
43	Mitochondrial ATP-Dependent Potassium Channels: Viable Candidate Effectors of Ischemic Preconditioninga. Annals of the New York Academy of Sciences, 1999, 874, 27-37.	3.8	137
44	Pharmacological Comparison of Native Mitochondrial KATP Channels with Molecularly Defined Surface KATP Channels. Molecular Pharmacology, 2001, 59, 225-230.	2.3	137
45	Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells. Stem Cells, 2010, 28, 1178-1185.	3.2	134
46	Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. Journal of Molecular and Cellular Cardiology, 2010, 49, 312-321.	1.9	129
47	Pre-existing traits associated with Covid-19 illness severity. PLoS ONE, 2020, 15, e0236240.	2.5	129
48	Fibroblasts Rendered Antifibrotic, Antiapoptotic, and Angiogenic by Priming With Cardiosphere-Derived Extracellular Membrane Vesicles. Journal of the American College of Cardiology, 2015, 66, 599-611.	2.8	124
49	Next-generation pacemakers: from small devices to biological pacemakers. Nature Reviews Cardiology, 2018, 15, 139-150.	13.7	123
50	Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nature Communications, 2014, 5, 4880.	12.8	119
51	Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H80-H91.	3.2	118
52	Calcium cycling and contractile activation in intact mouse cardiac muscle. Journal of Physiology, 1998, 507, 175-184.	2.9	113
53	Relative Roles of CD90 and câ€Kit to the Regenerative Efficacy of Cardiosphereâ€Derived Cells in Humans and in a Mouse Model of Myocardial Infarction. Journal of the American Heart Association, 2014, 3, e001260.	3.7	104
54	Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy. Stem Cell Reports, 2018, 10, 942-955.	4.8	101

#	Article	IF	CITATIONS
55	Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials, 2012, 33, 5317-5324.	11.4	100
56	Validation of Contrast-Enhanced Magnetic Resonance Imaging to Monitor Regenerative Efficacy After Cell Therapy in a Porcine Model of Convalescent Myocardial Infarction. Circulation, 2013, 128, 2764-2775.	1.6	100
57	Human Cardiosphere-Derived Cells FromÂAdvanced Heart Failure Patients ExhibitÂAugmented Functional Potency in Myocardial Repair. JACC: Heart Failure, 2014, 2, 49-61.	4.1	100
58	Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes. Proteomics, 2010, 10, 245-253.	2.2	98
59	Biological Therapies for Cardiac Arrhythmias. Circulation Research, 2010, 106, 674-685.	4.5	96
60	Cardiosphere-Derived Cells Reverse Heart Failure With Preserved Ejection Fraction inÂRats by Decreasing Fibrosis andÂlnflammation. JACC Basic To Translational Science, 2016, 1, 14-28.	4.1	95
61	The Secret Life of Exosomes. Journal of the American College of Cardiology, 2018, 71, 193-200.	2.8	92
62	Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair. Cardiovascular Research, 2011, 89, 157-165.	3.8	89
63	Molecular Composition of Mitochondrial ATP-sensitive Potassium Channels Probed by Viral Kir Gene Transfer. Journal of Molecular and Cellular Cardiology, 2000, 32, 1923-1930.	1.9	86
64	Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit after Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion. Cell Transplantation, 2012, 21, 1121-1135.	2.5	86
65	Translating Stem Cell Research to Cardiac Disease Therapies. Journal of the American College of Cardiology, 2014, 64, 922-937.	2.8	85
66	Allogeneic Cardiospheres Safely Boost Cardiac Function and Attenuate Adverse Remodeling After Myocardial Infarction in Immunologically Mismatched Rat Strains. Journal of the American College of Cardiology, 2013, 61, 1108-1119.	2.8	83
67	Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO Molecular Medicine, 2014, 6, 760-777.	6.9	82
68	Cellular Postconditioning. Circulation: Heart Failure, 2015, 8, 322-332.	3.9	79
69	Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. European Heart Journal, 2015, 36, 751-762.	2.2	79
70	Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. European Heart Journal, 2020, 41, 3451-3458.	2.2	78
71	A mechanistic roadmap for the clinical application of cardiac cell therapies. Nature Biomedical Engineering, 2018, 2, 353-361.	22.5	77
72	Functional Expression of Exogenous Proteins in Mammalian Sensory Hair Cells Infected With Adenoviral Vectors. Journal of Neurophysiology, 1999, 81, 1881-1888.	1.8	76

#	Article	IF	Citations
73	Creation of a Biological Pacemaker by Cell Fusion. Circulation Research, 2007, 100, 1112-1115.	4.5	73
74	Intrinsic cardiac origin of human cardiosphere-derived cells. European Heart Journal, 2013, 34, 68-75.	2.2	68
75	Human Cardiospheres Are a Source of Stem Cells with Cardiomyogenic Potential. Stem Cells, 2010, 28, 903-904.	3.2	67
76	Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats. European Heart Journal, 2017, 38, 2957-2967.	2.2	65
77	Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology, 2019, 92, e866-e878.	1.1	64
78	Mechanistic link between lidocaine block and inactivation probed by outer pore mutations in the rat $\hat{l}/41$ skeletal muscle sodium channel. Journal of Physiology, 1998, 512, 693-705.	2.9	63
79	Lidocaine induces a slow inactivated state in rat skeletal muscle sodium channels. Journal of Physiology, 2000, 524, 37-49.	2.9	63
80	Non-equilibrium behavior of HCN channels: Insights into the role of HCN channels in native and engineered pacemakers. Cardiovascular Research, 2005, 67, 263-273.	3.8	63
81	Is Kir6.1 a subunit of mitoKATP?. Biochemical and Biophysical Research Communications, 2008, 366, 649-656.	2.1	63
82	Transcriptional Suppression of Connexin43 by TBX18 Undermines Cell-Cell Electrical Coupling in Postnatal Cardiomyocytes. Journal of Biological Chemistry, 2011, 286, 14073-14079.	3.4	60
83	Gene Transfer of a Synthetic Pacemaker Channel Into the Heart. Circulation, 2006, 114, 1682-1686.	1.6	58
84	A comprehensive method for identification of suitable reference genes in extracellular vesicles. Journal of Extracellular Vesicles, 2017, 6, 1347019.	12.2	58
85	Is Cardioprotection Dead?. Circulation, 2017, 136, 98-109.	1.6	58
86	Angiogenesis, Cardiomyocyte Proliferation and Anti-Fibrotic Effects Underlie Structural Preservation Post-Infarction by Intramyocardially-Injected Cardiospheres. PLoS ONE, 2014, 9, e88590.	2.5	58
87	Disease-modifying bioactivity of intravenous cardiosphere-derived cells and exosomes in mdx mice. JCI Insight, 2019, 4, .	5.0	56
88	Importance of Cell-Cell Contact in the Therapeutic Benefits of Cardiosphere-Derived Cells. Stem Cells, 2014, 32, 2397-2406.	3.2	55
89	Delayed Repolarization Underlies Ventricular Arrhythmias in Rats With Heart Failure and Preserved Ejection Fraction. Circulation, 2017, 136, 2037-2050.	1.6	54
90	<i>I</i> _{K1} Heterogeneity Affects Genesis and Stability of Spiral Waves in Cardiac Myocyte Monolayers. Circulation Research, 2009, 104, 355-364.	4.5	53

#	Article	IF	Citations
91	Cardiospheres reverse adverse remodeling in chronic rat myocardial infarction: roles of soluble endoglin and Tgf- \hat{l}^2 signaling. Basic Research in Cardiology, 2014, 109, 443.	5.9	52
92	Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories. Nature Biomedical Engineering, 2019, 3, 695-705.	22.5	52
93	Determination of Location, Size, and Transmurality of Chronic Myocardial Infarction Without Exogenous Contrast Media by Using Cardiac Magnetic Resonance Imaging at 3 T. Circulation: Cardiovascular Imaging, 2014, 7, 471-481.	2.6	51
94	Stem cells in the heart: What's the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm, 2008, 5, 880-887.	0.7	49
95	Doseâ€dependent functional benefit of human cardiosphere transplantation in mice with acute myocardial infarction. Journal of Cellular and Molecular Medicine, 2012, 16, 2112-2116.	3.6	49
96	Angiotensin II–Induced End-Organ Damage in Mice Is Attenuated by Human Exosomes and by an Exosomal Y RNA Fragment. Hypertension, 2018, 72, 370-380.	2.7	49
97	Mechanism of Enhanced MerTK-Dependent Macrophage Efferocytosis by Extracellular Vesicles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2082-2096.	2.4	49
98	Allogeneic Cardiospheres Delivered via Percutaneous Transendocardial Injection Increase Viable Myocardium, Decrease Scar Size, and Attenuate Cardiac Dilatation in Porcine Ischemic Cardiomyopathy. PLoS ONE, 2014, 9, e113805.	2.5	48
99	Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. Journal of Clinical Investigation, 2002, 109, 1083-1090.	8.2	48
100	Cardiospheres and cardiosphere-derived cells as therapeutic agents following myocardial infarction. Expert Review of Cardiovascular Therapy, 2012, 10, 1185-1194.	1.5	45
101	Enhancing retention and efficacy of cardiosphere-derived cells administered after myocardial infarction using a hyaluronan-gelatin hydrogel. Biomatter, 2013, 3, .	2.6	45
102	Transplantation of platelet gel spiked with cardiosphere-derived cells boosts structural and functional benefits relative to gel transplantation alone in rats with myocardial infarction. Biomaterials, 2012, 33, 2872-2879.	11.4	44
103	Breakthroughs in Cell Therapy for Heart Disease: Focus on Cardiosphere-Derived Cells. Mayo Clinic Proceedings, 2014, 89, 850-858.	3.0	44
104	Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse Remodeling. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	44
105	Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. Basic Research in Cardiology, 2020, 115, 36.	5.9	44
106	Extracellular vesicles from immortalized cardiosphere-derived cells attenuate arrhythmogenic cardiomyopathy in desmoglein-2 mutant mice. European Heart Journal, 2021, 42, 3558-3571.	2.2	44
107	Basic and Translational Research in Cardiac Repair and Regeneration. Journal of the American College of Cardiology, 2021, 78, 2092-2105.	2.8	42
108	Biological pacemaker created by percutaneous gene delivery via venous catheters in a porcine model of complete heart block. Heart Rhythm, 2012, 9, 1310-1318.	0.7	41

#	Article	IF	CITATIONS
109	Lentiviral Vectors Bearing the Cardiac Promoter of the Na+-Ca2+ Exchanger Report Cardiogenic Differentiation in Stem Cells. Molecular Therapy, 2008, 16, 957-964.	8.2	40
110	Mixed Results for Bone Marrow–Derived Cell Therapy for Ischemic Heart Disease. JAMA - Journal of the American Medical Association, 2012, 308, 2405.	7.4	39
111	Distinct features of calcium handling and βâ€adrenergic sensitivity in heart failure with preserved <i>versus</i> reduced ejection fraction. Journal of Physiology, 2020, 598, 5091-5108.	2.9	37
112	Functional Impairment of Human Resident Cardiac Stem Cells by the Cardiotoxic Antineoplastic Agent Trastuzumab. Stem Cells Translational Medicine, 2012, 1, 289-297.	3.3	36
113	Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, The, 2022, 399, 1049-1058.	13.7	36
114	Mechanisms of atrial fibrillation in aged rats with heart failure with preserved ejection fraction. Heart Rhythm, 2020, 17, 1025-1033.	0.7	34
115	Ventricular Arrhythmias Underlie Sudden Death in Rats With Heart Failure and Preserved Ejection Fraction. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006452.	4.8	33
116	Durable Benefits of Cellular Postconditioning: Longâ€Term Effects of Allogeneic Cardiosphereâ€Derived Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. Journal of the American Heart Association, 2016, 5, .	3.7	32
117	Cardiac arrhythmias in hospitalized patients with COVID-19: A prospective observational study in the western United States. PLoS ONE, 2020, 15, e0244533.	2.5	32
118	Allogeneic cardiosphere-derived cells for the treatment of heart failure with reduced ejection fraction: the Dilated cardiomYopathy iNtervention with Allogeneic Myocardlally-regenerative Cells (DYNAMIC) trial. EuroIntervention, 2020, 16, e293-e300.	3.2	32
119	Wnt signalling suppresses voltageâ€dependent Na ⁺ channel expression in postnatal rat cardiomyocytes. Journal of Physiology, 2015, 593, 1147-1157.	2.9	31
120	Widespread Myocardial Delivery of Heart-Derived Stem Cells by Nonocclusive Triple-Vessel Intracoronary Infusion in Porcine Ischemic Cardiomyopathy: Superior Attenuation of Adverse Remodeling Documented by Magnetic Resonance Imaging and Histology. PLoS ONE, 2016, 11, e0144523.	2.5	31
121	Heart to heart: Cardiospheres for myocardial regeneration. Heart Rhythm, 2012, 9, 1727-1731.	0.7	30
122	Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes. Journal of Extracellular Vesicles, 2018, 7, 1456888.	12.2	30
123	Repeated transplantation of allogeneic cardiosphere-derived cells boosts therapeutic benefits without immune sensitization in a rat model of myocardial infarction. Journal of Heart and Lung Transplantation, 2016, 35, 1348-1357.	0.6	29
124	Optimized CEST cardiovascular magnetic resonance for assessment of metabolic activity in the heart. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 95.	3.3	29
125	Intravenous xenogeneic human cardiosphere-derived cell extracellular vesicles (exosomes) improves behavioral function in small-clot embolized rabbits. Experimental Neurology, 2018, 307, 109-117.	4.1	29
126	Intracoronary Delivery of Self-Assembling Heart-Derived Microtissues (Cardiospheres) for Prevention of Adverse Remodeling in a Pig Model of Convalescent Myocardial Infarction. Circulation: Cardiovascular Interventions, 2015, 8, .	3.9	28

#	Article	IF	CITATIONS
127	A corrole nanobiologic elicits tissue-activated MRI contrast enhancement and tumor-targeted toxicity. Journal of Controlled Release, 2015, 217, 92-101.	9.9	28
128	Brief Report: Mechanism of Extravasation of Infused Stem Cells. Stem Cells, 2012, 30, 2835-2842.	3.2	27
129	Diffusion Tensor Cardiac Magnetic Resonance Reveals Exosomes From Cardiosphere-Derived Cells Preserve Myocardial Fiber Architecture After Myocardial Infarction. JACC Basic To Translational Science, 2018, 3, 97-109.	4.1	27
130	Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells. Scientific Reports, 2015, 5, 17686.	3.3	25
131	Biological pacemakers as a therapy for cardiac arrhythmias. Current Opinion in Cardiology, 2008, 23, 46-54.	1.8	24
132	VAMP-1, VAMP-2, and syntaxin-4 regulate ANP release from cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2010, 49, 791-800.	1.9	24
133	Engineered Electrical Conduction TractÂRestores Conduction in CompleteÂHeart Block. Journal of the American College of Cardiology, 2014, 64, 2575-2585.	2.8	24
134	Extracellular Vesicles as Therapeutic Agents for Cardiac Fibrosis. Frontiers in Physiology, 2020, 11, 479.	2.8	23
135	Creation of a biological pacemaker by gene- or cell-based approaches. Medical and Biological Engineering and Computing, 2007, 45, 133-144.	2.8	22
136	Reverse electrical remodeling in rats with heart failure and preserved ejection fraction. JCI Insight, $2018, 3, .$	5.0	22
137	Heart to Heart. Circulation, 2010, 121, 1981-1984.	1.6	21
138	Disruption of Intracellular Ca2+ Homeostasis in Hearts Reperfused after Prolonged Episodes of Ischemia a. Annals of the New York Academy of Sciences, 1994, 723, 38-50.	3.8	19
139	Frequency-dependent changes in calcium cycling and contractile activation in SERCA2a transgenic mice. Basic Research in Cardiology, 2000, 95, 144-151.	5.9	17
140	Biological substrate modification suppresses ventricular arrhythmias in a porcine model of chronic ischaemic cardiomyopathy. European Heart Journal, 2022, 43, 2139-2156.	2.2	17
141	Moving Beyond Surrogate Endpoints in Cell Therapy Trials for Heart Disease. Stem Cells Translational Medicine, 2014, 3, 2-6.	3.3	16
142	Antegrade Conduction Rescues RightÂVentricular Pacing-Induced Cardiomyopathy in Complete Heart Block. Journal of the American College of Cardiology, 2019, 73, 1673-1687.	2.8	16
143	Therapeutic benefits of intravenous cardiosphere-derived cell therapy in rats with pulmonary hypertension. PLoS ONE, 2017, 12, e0183557.	2.5	16
144	Myofilament Phosphorylation in Stem Cell Treated Diastolic Heart Failure. Circulation Research, 2021, 129, 1125-1140.	4.5	16

#	Article	IF	CITATIONS
145	Effect of cardiosphere-derived cells on segmental myocardial function after myocardial infarction: ALLSTAR randomised clinical trial. Open Heart, 2021, 8, e001614.	2.3	15
146	Pathogenesis of arrhythmogenic cardiomyopathy: role of inflammation. Basic Research in Cardiology, 2021, 116, 39.	5.9	14
147	Direct and Indirect Suppression of Scn5a Gene Expression Mediates Cardiac Na+ Channel Inhibition by Wnt Signalling. Canadian Journal of Cardiology, 2020, 36, 564-576.	1.7	12
148	Harnessing the heart's resistance to malignant tumors: cardiac-derived extracellular vesicles decrease fibrosarcoma growth and leukemia-related mortality in rodents. Oncotarget, 2017, 8, 99624-99636.	1.8	12
149	Exosomally derived Y RNA fragment alleviates hypertrophic cardiomyopathy in transgenic mice. Molecular Therapy - Nucleic Acids, 2021, 24, 951-960.	5.1	11
150	Biodistribution of unmodified cardiosphereâ€derived cell extracellular vesicles using single RNA tracing. Journal of Extracellular Vesicles, 2022, 11, e12178.	12.2	11
151	Cardiac regeneration validated. Nature Biotechnology, 2015, 33, 587-587.	17.5	9
152	Direct Reprogramming. JAMA - Journal of the American Medical Association, 2015, 314, 19.	7.4	9
153	Quantitative Hybrid Cardiac [18F]FDG-PET-MRI Images for Assessment of Cardiac Repair by Preconditioned Cardiosphere-Derived Cells. Molecular Therapy - Methods and Clinical Development, 2020, 18, 354-366.	4.1	9
154	Cardiosphere-derived cells, with and without a biological scaffold, stimulate myogenesis and recovery of muscle function in mice with volumetric muscle loss. Biomaterials, 2021, 274, 120852.	11.4	9
155	Caseinâ€enhanced uptake and diseaseâ€modifying bioactivity of ingested extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12045.	12.2	9
156	Virus-Mediated Modification of Cellular Excitability. Annals of the New York Academy of Sciences, 1999, 868, 418-422.	3.8	8
157	Repeated cell transplantation and adjunct renal denervation in ischemic heart failure: exploring modalities for improving cell therapy efficacy. Basic Research in Cardiology, 2019, 114, 9.	5.9	8
158	Electrocardiogram-less, free-breathing myocardial extracellular volume fraction mapping in small animals at high heart rates using motion-resolved cardiovascular magnetic resonance multitasking: a feasibility study in a heart failure with preserved ejection fraction rat model. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 8.	3.3	8
159	Delayed repolarization and ventricular tachycardia in patients with heart failure and preserved ejection fraction. PLoS ONE, 2021, 16, e0254641.	2.5	8
160	Engineered Fibroblast Extracellular Vesicles Attenuate Pulmonary Inflammation and Fibrosis in Bleomycin-Induced Lung Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 733158.	3.7	8
161	Mechanistic and therapeutic distinctions between cardiosphere-derived cell and mesenchymal stem cell extracellular vesicle non-coding RNA. Scientific Reports, 2021, 11, 8666.	3.3	7
162	Regulatory T cell activation, proliferation, and reprogramming induced by extracellular vesicles. Journal of Heart and Lung Transplantation, 2021, 40, 1387-1395.	0.6	7

#	Article	IF	CITATIONS
163	On the cellular origin of cardiosphere-derived cells (CDCs). Basic Research in Cardiology, 2022, 117, 12.	5.9	7
164	Taking the Cells Out of Cell Therapy. Journal of the American College of Cardiology, 2012, 60, 1707-1708.	2.8	6
165	Pituitary Somatotroph Adenoma-derived Exosomes: Characterization of Nonhormonal Actions. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 379-397.	3.6	6
166	Mechanism for the Cardioprotective Effects of the Calcium Channel Blocker Clentiazem During Ischemia and Reperfusion. Japanese Circulation Journal, 1998, 62, 611-616.	1.0	4
167	Cardiosphere-derived cells for heart regeneration – Authors' reply. Lancet, The, 2012, 379, 2426-2427.	13.7	4
168	A phoenix rises from the ashes of cardiac cell therapy. Nature Reviews Cardiology, 2021, 18, 743-744.	13.7	4
169	Extracellular Vesicles Secreted by TDO2-Augmented Fibroblasts Regulate Pro-inflammatory Response in Macrophages. Frontiers in Cell and Developmental Biology, 2021, 9, 733354.	3.7	4
170	Letter by Ibrahim et al Regarding Article, "Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts― Circulation Research, 2018, 123, e65-e66.	4.5	3
171	Small molecule inhibitors and culture conditions enhance therapeutic cell and EV potency via activation of beta-catenin and suppression of THY1. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102347.	3.3	3
172	Recreating the Sinus Node by Somatic Reprogramming: A Dream Come True?. Revista Espanola De Cardiologia (English Ed), 2015, 68, 743-745.	0.6	2
173	Stem Cell Therapy Targets: Repêchage!. Circulation Research, 2022, 130, 339-342.	4.5	2
174	Letter by Makkar et al Regarding Article, "Cell Therapy for Heart Failure: A Comprehensive Overview of Experimental and Clinical Studies, Current Challenges, and Future Directions― Circulation Research, 2014, 115, e32.	4.5	1
175	Letter by Gallet and Marbán Regarding Article, "Intracoronary Injection of Large Stem Cells: Size Matters― Circulation: Cardiovascular Interventions, 2015, 8, e002843.	3.9	1
176	Macrophages are Required for Recovery from Physiological Muscle Stress in the mdx Mouse Model of Muscular Dystrophy. FASEB Journal, 2018, 32, lb438.	0.5	1
177	Cardiosphereâ€Derived Cell Exosomes Modulate mdx Macrophage Phenotype and Alter Their Secretome. FASEB Journal, 2019, 33, lb611.	0.5	1
178	Response to Letter Regarding Article, "Combined Cardiac Magnetic Resonance Imaging and C-Reactive Protein Levels Identify a Cohort at Low Risk for Defibrillator Firings and Death― Circulation: Cardiovascular Imaging, 2012, 5, .	2.6	0
179	Tissue engineered cardiac stem cell grafts for repairing heart with myocardial infarction. FASEB Journal, 2010, 24, 599.11.	0.5	0
180	Cardiac Cell Therapy for Ischemic Heart Disease. , 2013, , 229-257.		0

#	Article	IF	CITATIONS
181	Therapeutic Exosome Preparations: Relative Bioactivities of Intra―and Extraâ€Vesicular Components. FASEB Journal, 2018, 32, 840.8.	0.5	O
182	Heart-derived cells for therapeutics. , 2020, , 217-243.		0
183	Immunological mechanisms of exosome mediated therapeutic bioactivity in Duchenne muscular dystrophy. FASEB Journal, 2020, 34, 1 -1.	0.5	0
184	Pre-existing traits associated with Covid-19 illness severity. , 2020, 15, e0236240.		0
185	Pre-existing traits associated with Covid-19 illness severity. , 2020, 15, e0236240.		O
186	Pre-existing traits associated with Covid-19 illness severity. , 2020, 15, e0236240.		0
187	Pre-existing traits associated with Covid-19 illness severity. , 2020, 15, e0236240.		O
188	Title is missing!. , 2020, 15, e0244533.		O
189	Title is missing!. , 2020, 15, e0244533.		O
190	Title is missing!., 2020, 15, e0244533.		0
191	Title is missing!. , 2020, 15, e0244533.		O