
Christian Wolfrum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4245208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a regulatory pathway inhibiting adipogenesis via RSPO2. Nature Metabolism, 2022, 4, 90-105.	5.1	39
2	Sexual dimorphism in COVID-19: potential clinical and public health implications. Lancet Diabetes and Endocrinology,the, 2022, 10, 221-230.	5.5	78
3	Novel insights into adipose tissue heterogeneity. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 5-12.	2.6	22
4	Fueling the fire of adipose thermogenesis. Science, 2022, 375, 1229-1231.	6.0	30
5	A â€~replace me' signal from dying brown fat fires up weight loss. Nature, 2022, 609, 252-253.	13.7	3
6	Relation of diet-induced thermogenesis to brown adipose tissue activity in healthy men. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E93-E101.	1.8	20
7	Creatine supplementation and thermogenesis in humans—a futile exercise?. Nature Metabolism, 2021, 3, 9-10.	5.1	1
8	Quantification of adipocyte numbers following adipose tissue remodeling. Cell Reports, 2021, 35, 109023.	2.9	12
9	GHS-R in brown fat potentiates differential thermogenic responses under metabolic and thermal stresses. PLoS ONE, 2021, 16, e0249420.	1.1	2
10	The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metabolism, 2021, 33, 833-844.e5.	7.2	128
11	Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nature Communications, 2021, 12, 2715.	5.8	19
12	Secretin activates brown fat and induces satiation. Nature Metabolism, 2021, 3, 798-809.	5.1	41
13	Plasticity and heterogeneity of thermogenic adipose tissue. Nature Metabolism, 2021, 3, 751-761.	5.1	29
14	Free Thyroxine Levels are Associated with Cold Induced Thermogenesis in Healthy Euthyroid Individuals. Frontiers in Endocrinology, 2021, 12, 666595.	1.5	6
15	GPR3 sets brown fat on fire. Cell Metabolism, 2021, 33, 1271-1273.	7.2	0
16	Brown adipose tissue is the key depot for glucose clearance in microbiota depleted mice. Nature Communications, 2021, 12, 4725.	5.8	25
17	Quantification of adipocyte numbers in transgenic mice via the Cre-LoxP recombination sites. STAR Protocols, 2021, 2, 100761.	0.5	0
18	Highâ€Throughput Singleâ€Cell Mass Spectrometry Reveals Abnormal Lipid Metabolism in Pancreatic Ductal Adenocarcinoma. Angewandte Chemie - International Edition, 2021, 60, 24534-24542.	7.2	31

#	Article	IF	CITATIONS
19	Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application. Molecular Metabolism, 2021, 51, 101237.	3.0	27
20	Metabolomic Analysis Reveals Changes in Plasma Metabolites in Response to Acute Cold Stress and Their Relationships to Metabolic Health in Cold-Acclimatized Humans. Metabolites, 2021, 11, 619.	1.3	8
21	FGF-2–dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
22	Functional diversity of human adipose tissue revealed by spatial mapping. Nature Reviews Endocrinology, 2021, 17, 713-714.	4.3	3
23	Local acetate inhibits brown adipose tissue function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
24	SORLA is required for insulin-induced expansion of the adipocyte precursor pool in visceral fat. Journal of Cell Biology, 2021, 220, .	2.3	1
25	Fluvastatin Reduces Glucose Tolerance in Healthy Young Individuals Independently of Cold Induced BAT Activity. Frontiers in Endocrinology, 2021, 12, 765807.	1.5	2
26	Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nature Metabolism, 2021, 3, 1648-1661.	5.1	70
27	GPR180 is a component of TGF \hat{I}^2 signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1. Nature Communications, 2021, 12, 7144.	5.8	14
28	Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews, 2020, 41, 53-65.	8.9	109
29	Brown fat does not cause cachexia in cancer patients: A large retrospective longitudinal FDG-PET/CT cohort study. PLoS ONE, 2020, 15, e0239990.	1.1	16
30	snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature, 2020, 587, 98-102.	13.7	221
31	Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metabolism, 2020, 31, 1136-1153.e7.	7.2	233
32	A Genetic Model to Study the Contribution of Brown and Brite Adipocytes to Metabolism. Cell Reports, 2020, 30, 3424-3433.e4.	2.9	31
33	ASK1 inhibits browning of white adipose tissue in obesity. Nature Communications, 2020, 11, 1642.	5.8	31
34	ESRRG and PERM1 Govern Mitochondrial Conversion in Brite/Beige Adipocyte Formation. Frontiers in Endocrinology, 2020, 11, 387.	1.5	7
35	Reply to â€~Confounding issues in the â€~humanized' brown fat of mice'. Nature Metabolism, 2020, 2, 305-306.	5.1	7
36	Feeding brown fat: dietary phytochemicals targeting non-shivering thermogenesis to control body weight. Proceedings of the Nutrition Society, 2020, 79, 338-356.	0.4	19

#	Article	IF	CITATIONS
37	Cold Exposure Distinctively Modulates Parathyroid and Thyroid Hormones in Cold-Acclimatized and Non-Acclimatized Humans. Endocrinology, 2020, 161, .	1.4	16
38	Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight, 2020, 5, .	2.3	62
39	Low-dose 18F-FDG TOF-PET/MR for accurate quantification of brown adipose tissue in healthy volunteers. EJNMMI Research, 2020, 10, 5.	1.1	7
40	Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nature Metabolism, 2019, 1, 830-843.	5.1	103
41	Identification of chemotypes in bitter melon by metabolomics: a plant with potential benefit for management of diabetes in traditional Chinese medicine. Metabolomics, 2019, 15, 104.	1.4	30
42	Antioxidants protect against diabetes by improving glucose homeostasis in mouse models of inducible insulin resistance and obesity. Diabetologia, 2019, 62, 2094-2105.	2.9	38
43	Puerariae lobatae root extracts and the regulation of brown fat activity. Phytomedicine, 2019, 64, 153075.	2.3	19
44	Overexpression of cyclooxygenase-2 in adipocytes reduces fat accumulation in inguinal white adipose tissue and hepatic steatosis in high-fat fed mice. Scientific Reports, 2019, 9, 8979.	1.6	22
45	Liver ASK1 protects from nonâ€alcoholic fatty liver disease and fibrosis. EMBO Molecular Medicine, 2019, 11, e10124.	3.3	59
46	Environmental and Nutritional Effects Regulating Adipose Tissue Function and Metabolism Across Generations. Advanced Science, 2019, 6, 1900275.	5.6	18
47	Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10547-10556.	3.3	118
48	ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer. Nature Communications, 2019, 10, 1809.	5.8	30
49	Fat cells with a sweet tooth. Nature, 2019, 565, 167-168.	13.7	2
50	Inhibition of Mevalonate Pathway Prevents Adipocyte Browning in Mice and Men by Affecting Protein Prenylation. Cell Metabolism, 2019, 29, 901-916.e8.	7.2	59
51	Proliferation of nutrition sensing preadipocytes upon short term HFD feeding. Adipocyte, 2019, 8, 16-25.	1.3	15
52	Maternal overnutrition leads to cognitive and neurochemical abnormalities in C57BL/6 mice. Nutritional Neuroscience, 2019, 22, 688-699.	1.5	23
53	Statins: benefits and risks revisited. Aging, 2019, 11, 4300-4302.	1.4	3
54	Increased Ifi202b/IFI16 expression stimulates adipogenesis in mice and humans. Diabetologia, 2018, 61, 1167-1179.	2.9	21

#	Article	IF	CITATIONS
55	Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. Cell Reports, 2018, 22, 760-773.	2.9	86
56	Weight Loss and Adipose Tissue Browning in Humans: The Chicken or the Egg?. Trends in Endocrinology and Metabolism, 2018, 29, 450-452.	3.1	4
57	Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Seminars in Immunopathology, 2018, 40, 215-224.	2.8	194
58	Age-Induced Changes in White, Brite, and Brown Adipose Depots: A Mini-Review. Gerontology, 2018, 64, 229-236.	1.4	61
59	Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metabolism, 2018, 27, 195-209.e6.	7.2	151
60	Transgenerational transmission of hedonic behaviors and metabolic phenotypes induced by maternal overnutrition. Translational Psychiatry, 2018, 8, 195.	2.4	39
61	BATLAS: Deconvoluting Brown Adipose Tissue. Cell Reports, 2018, 25, 784-797.e4.	2.9	89
62	Outdoor Temperature Influences Cold Induced Thermogenesis in Humans. Frontiers in Physiology, 2018, 9, 1184.	1.3	28
63	TRPC1 regulates brown adipose tissue activity in a PPARÎ ³ -dependent manner. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E825-E832.	1.8	14
64	Cold-induced epigenetic programming of the sperm enhances brown adipose tissue activity in the offspring. Nature Medicine, 2018, 24, 1372-1383.	15.2	87
65	Novel Natural Products for Healthy Ageing from the Mediterranean Diet and Food Plants of Other Global Sources—The MediHealth Project. Molecules, 2018, 23, 1097.	1.7	16
66	Lessons from Cre-Mice and Indicator Mice. Handbook of Experimental Pharmacology, 2018, 251, 37-54.	0.9	6
67	Shortâ€ŧerm feeding of a ketogenic diet induces more severe hepatic insulin resistance than an obesogenic highâ€fat diet. Journal of Physiology, 2018, 596, 4597-4609.	1.3	64
68	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3
69	A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature, 2018, 559, 103-108.	13.7	327
70	<i>Adam17</i> Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 247-257.	1.1	59
71	The dual role of BMP4 in adipogenesis and metabolism. Adipocyte, 2017, 6, 141-146.	1.3	30
72	A high-throughput, image-based screen to identify kinases involved in brown adipocyte development. Science Signaling, 2017, 10, .	1.6	16

#	Article	IF	CITATIONS
73	Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 2017, 542, 450-455.	13.7	1,107
74	Adipocytes at the Core of Bone Function. Cell Stem Cell, 2017, 20, 739-740.	5.2	6
75	In-depth analysis of interreader agreement and accuracy in categorical assessment of brown adipose tissue in (18)FDG-PET/CT. European Journal of Radiology, 2017, 91, 41-46.	1.2	6
76	Quantitative trait locus mapping in mice identifies phospholipase Pla2g12a as novel atherosclerosis modifier. Atherosclerosis, 2017, 265, 197-206.	0.4	12
77	A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metabolism, 2017, 26, 475-492.e7.	7.2	71
78	Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production. Immunity, 2017, 47, 928-942.e7.	6.6	123
79	Regulation of glycolysis in brown adipocytes by HIF-1α. Scientific Reports, 2017, 7, 4052.	1.6	46
80	LSD1 Makes Fat Colorful. Trends in Endocrinology and Metabolism, 2017, 28, 1-2.	3.1	2
81	Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function. PLoS ONE, 2017, 12, e0178368.	1.1	17
82	SRF and MKL1 Independently Inhibit Brown Adipogenesis. PLoS ONE, 2017, 12, e0170643.	1.1	23
83	Anatomical Grading for Metabolic Activity of Brown Adipose Tissue. PLoS ONE, 2016, 11, e0149458.	1.1	20
84	Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2Âdependent signaling. Molecular Metabolism, 2016, 5, 937-947.	3.0	29
85	An AMP-activated protein kinase–stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 2016, 22, 1120-1130.	15.2	106
86	Chemical Synthesis of the 12 <scp>kD</scp> a Human Myokine Irisin by <i>α</i> â€Ketoacidâ€Hydroxylamine (KAHA) Ligation. Helvetica Chimica Acta, 2016, 99, 897-907.	1.0	12
87	Bmp4 Promotes a Brown to White-like AdipocyteÂShift. Cell Reports, 2016, 16, 2243-2258.	2.9	95
88	Liver ubiquitome uncovers nutrient-stress-mediated trafficking and secretion of complement C3. Cell Death and Disease, 2016, 7, e2411-e2411.	2.7	4
89	Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways. Scientific Reports, 2016, 6, 30030.	1.6	60
90	Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice. Scientific Reports, 2016, 6, 31566.	1.6	52

#	Article	IF	CITATIONS
91	Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1121-1131.	1.2	47
92	Mildly compromised tetrahydrobiopterin cofactor biosynthesis due to <i>Pts</i> variants leads to unusual body fat distribution and abdominal obesity in mice. Journal of Inherited Metabolic Disease, 2016, 39, 309-319.	1.7	10
93	TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling. Molecular Metabolism, 2015, 4, 795-810.	3.0	29
94	Adipose Tissue Stem Cells. Handbook of Experimental Pharmacology, 2015, 233, 251-263.	0.9	11
95	Blockade of VEGF-C and VEGF-D modulates adipose tissue inflammation and improves metabolic parameters under high-fat diet. Molecular Metabolism, 2015, 4, 93-105.	3.0	105
96	Rapid and Body Weight–Independent Improvement of Endothelial and High-Density Lipoprotein Function After Roux-en-Y Gastric Bypass. Circulation, 2015, 131, 871-881.	1.6	103
97	Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity. Obesity, 2015, 23, 322-328.	1.5	9
98	FGF21, energy expenditure and weight loss – How much brown fat do you need?. Molecular Metabolism, 2015, 4, 605-609.	3.0	30
99	Improved adipose tissue metabolism after 5-year growth hormone replacement therapy in growth hormone deficient adults: The role of zinc-α2-glycoprotein. Adipocyte, 2015, 4, 113-122.	1.3	12
100	Regulation of De Novo Adipocyte Differentiation Through Cross Talk Between Adipocytes and Preadipocytes. Diabetes, 2015, 64, 4075-4087.	0.3	33
101	Chronic High-Fat Diet Impairs Collecting Lymphatic Vessel Function in Mice. PLoS ONE, 2014, 9, e94713.	1.1	113
102	The origin and definition of brite versus white and classical brown adipocytes. Adipocyte, 2014, 3, 4-9.	1.3	157
103	Effects of obesity, diabetes and exercise on <i>Fndc5</i> gene expression and irisin release in human skeletal muscle and adipose tissue: <i>in vivo</i> and <i>in vitro</i> studies. Journal of Physiology, 2014, 592, 1091-1107.	1.3	329
104	Exercise-mimicking treatment fails to increase Fndc5 mRNA & irisin secretion in primary human myotubes. Peptides, 2014, 56, 1-7.	1.2	46
105	Subcutaneous adipose tissue zincâ€i±2â€glycoprotein is associated with adipose tissue and wholeâ€body insulin sensitivity. Obesity, 2014, 22, 1821-1829.	1.5	61
106	Optimization and scaleâ€up of oligonucleotide synthesis in packed bed reactors using computational fluid dynamics modeling. Biotechnology Progress, 2014, 30, 1048-1056.	1.3	2
107	Gene Delivery to Adipose Tissue Using Transcriptionally Targeted rAAV8 Vectors. PLoS ONE, 2014, 9, e116288.	1.1	10
108	Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network. ELife, 2014, 3, e03346.	2.8	101

#	Article	IF	CITATIONS
109	Genetic modulation of the serotonergic pathway: influence on weight reduction and weight maintenance. Genes and Nutrition, 2013, 8, 601-610.	1.2	5
110	Transcriptional regulation of adipocyte formation by the liver receptor homologue 1 (Lrh1)—Small hetero-dimerization partner (Shp) network. Molecular Metabolism, 2013, 2, 314-323.	3.0	10
111	Longitudinal evaluation of hepatic lipid deposition and composition in ob/ob and ob/+ control mice. NMR in Biomedicine, 2013, 26, 1079-1088.	1.6	13
112	A radical opposition in body weight control. EMBO Molecular Medicine, 2013, 5, 1147-1148.	3.3	3
113	Malfunctioning of adipocytes in obesity is linked to quantitative surfaceome changes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1208-1216.	1.2	20
114	Transcriptional Cofactor TBLR1 Controls Lipid Mobilization in White Adipose Tissue. Cell Metabolism, 2013, 17, 575-585.	7.2	41
115	Bi-directional interconversion of brite and whiteÂadipocytes. Nature Cell Biology, 2013, 15, 659-667.	4.6	666
116	Bone morphogenic proteins signaling in adipogenesis and energy homeostasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 915-923.	1.2	31
117	Phenotypic Analysis of BAT versus WAT Differentiation. Current Protocols in Mouse Biology, 2013, 3, 205-216.	1.2	3
118	Effectiveness of a Low-Calorie Weight Loss Program in Moderately and Severely Obese Patients. Obesity Facts, 2013, 6, 469-480.	1.6	15
119	Harnessing a Physiologic Mechanism for siRNA Delivery With Mimetic Lipoprotein Particles. Molecular Therapy, 2012, 20, 1582-1589.	3.7	65
120	Regulation of Adipocyte Formation by GLP-1/GLP-1R Signaling. Journal of Biological Chemistry, 2012, 287, 6421-6430.	1.6	101
121	Hepatic lipid composition differs between ob/ob and ob/+ control mice as determined by using in vivo localized proton magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2012, 25, 381-389.	1.1	24
122	Maternal high-fat diet in mice programs emotional behavior in adulthood. Behavioural Brain Research, 2012, 233, 398-404.	1.2	144
123	TaqIA polymorphism in dopamine D2 receptor gene complicates weight maintenance in younger obese patients. Nutrition, 2012, 28, 996-1001.	1.1	30
124	Hairless promotes PPARÎ ³ expression and is required for white adipogenesis. EMBO Reports, 2012, 13, 1012-1020.	2.0	6
125	Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	37
126	Adipogenesis and insulin sensitivity in obesity are regulated by retinoidâ€related orphan receptor gamma. EMBO Molecular Medicine, 2011, 3, 637-651.	3.3	87

#	Article	IF	CITATIONS
127	Synthetic Inositol Phosphoglycans Related to GPI Lack Insulin-Mimetic Activity. ACS Chemical Biology, 2010, 5, 1075-1086.	1.6	17
128	Regulation of adaptive behaviour during fasting by hypothalamic Foxa2. Nature, 2009, 462, 646-650.	13.7	68
129	The role of retinoids and their receptors in metabolic disorders. European Journal of Lipid Science and Technology, 2008, 110, 191-205.	1.0	1
130	Foxa2 Activity Increases Plasma High Density Lipoprotein Levels by Regulating Apolipoprotein M. Journal of Biological Chemistry, 2008, 283, 16940-16949.	1.6	63
131	Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnology, 2007, 25, 1149-1157.	9.4	854
132	Coactivation of Foxa2 through Pgc- $1^{\hat{l}^2}$ promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metabolism, 2006, 3, 99-110.	7.2	156
133	Apolipoprotein M is required for preβ-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nature Medicine, 2005, 11, 418-422.	15.2	276
134	Large-scale purification of oligonucleotides by extraction and precipitation with butanole. Biotechnology and Bioengineering, 2005, 89, 551-555.	1.7	2
135	A Family with Severe Insulin Resistance and Diabetes Due to a Mutation in AKT2. Science, 2004, 304, 1325-1328.	6.0	509
136	Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature, 2004, 432, 1027-1032.	13.7	372
137	Regulation of Apolipoprotein M Gene Expression by MODY3 Gene Hepatocyte Nuclear Factor-1Â: Haploinsufficiency Is Associated With Reduced Serum Apolipoprotein M Levels. Diabetes, 2003, 52, 2989-2995.	0.3	121
138	Insulin regulates the activity of forkhead transcription factor Hnf-3Â/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11624-11629.	3.3	185
139	Role of Foxa-2 in adipocyte metabolism and differentiation. Journal of Clinical Investigation, 2003, 112, 345-356.	3.9	115
140	Branched Chain Fatty Acids Induce Nitric Oxide-dependent Apoptosis in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2002, 277, 49319-49325.	1.6	57
141	Decreased Glibenclamide Uptake in Hepatocytes of Hepatocyte Nuclear Factor-1Â-Deficient Mice: A Mechanism for Hypersensitivity to Sulfonylurea Therapy in Patients With Maturity-Onset Diabetes of the Young, Type 3 (MODY3). Diabetes, 2002, 51, S343-S348.	0.3	29
142	Title is missing!. Molecular and Cellular Biochemistry, 2002, 239, 227-234.	1.4	91
143	Plasma concentration of intestinal- and liver-FABP in neonates suffering from necrotizing enterocolitis and in healthy preterm neonates. , 2002, , 227-234.		9
144	Plasma concentration of intestinal- and liver-FABP in neonates suffering from necrotizing enterocolitis and in healthy preterm neonates. Molecular and Cellular Biochemistry, 2002, 239, 227-34.	1.4	49

#	Article	IF	CITATIONS
145	Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity. Oleagineux Corps Gras Lipides, 2001, 8, 39-44.	0.2	2
146	Pristanic acid is activator of peroxisome proliferator activated receptor alpha. European Journal of Lipid Science and Technology, 2001, 103, 75-80.	1.0	20
147	Fatty acids as regulators of lipid metabolism. European Journal of Lipid Science and Technology, 2000, 102, 746-762.	1.0	24
148	Effect of sex and bezafibrate on incorporation of blood borne palmitate into lipids of rat liver nuclei. Molecular and Cellular Biochemistry, 2000, 214, 57-62.	1.4	4
149	Binding of Fatty Acids and Peroxisome Proliferators to Orthologous Fatty Acid Binding Proteins from Human, Murine, and Bovine Liverâ€. Biochemistry, 2000, 39, 1469-1474.	1.2	74
150	Phytanic Acid Activates the Peroxisome Proliferator-activated Receptor α (PPARα) in Sterol Carrier Protein 2-/ Sterol Carrier Protein x-deficient Mice. Journal of Biological Chemistry, 1999, 274, 2766-2772.	1.6	156
151	Variation of liver-type fatty acid binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid uptake. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1437, 194-201.	1.2	88
152	Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. Journal of Lipid Research, 1999, 40, 708-714.	2.0	114
153	Synthese weiterer natürlich vorkommender 5-Methylcumarine. Liebigs Annalen Der Chemie, 1989, 1989, 295-298.	0.8	7
154	Further cadinene derivatives from Heterotheca latifolia. Phytochemistry, 1985, 24, 1101-1103.	1.4	11
155	Cross-Talk between Intracellular Lipid Binding Proteins and Ligand Activated Nuclear Receptors– A Signaling Pathway for Fatty Acids. , 0, , 267-283.		1
156	The Glucose-Dependent Insulinotropic Polypeptide (GIP) Regulates Body Weight and Food Intake Via CNS-GIPR Signaling. SSRN Electronic Journal, 0, , .	0.4	0