Chao-Jun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4243861/publications.pdf

Version: 2024-02-01

494 papers 45,407 citations

102 h-index 2828 191 g-index

731 all docs

731 docs citations

times ranked

731

19127 citing authors

#	Article	IF	CITATIONS
1	Cross-Dehydrogenative Coupling (CDC): Exploring Câ^'C Bond Formations beyond Functional Group Transformations. Accounts of Chemical Research, 2009, 42, 335-344.	15.6	2,493
2	Organic Reactions in Aqueous Media with a Focus on Carbonâ^Carbon Bond Formations:  A Decade Update. Chemical Reviews, 2005, 105, 3095-3166.	47.7	2,133
3	The Crossâ€Dehydrogenative Coupling of CH Bonds: A Versatile Strategy for CC Bond Formations. Angewandte Chemie - International Edition, 2014, 53, 74-100.	13.8	1,669
4	Organic chemistry in water. Chemical Society Reviews, 2006, 35, 68-82.	38.1	1,214
5	Green chemistry oriented organic synthesis in water. Chemical Society Reviews, 2012, 41, 1415-1427.	38.1	1,002
6	Green chemistry for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13197-13202.	7.1	764
7	A Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amines via Câ^'H Activation Catalyzed by Gold in Water. Journal of the American Chemical Society, 2003, 125, 9584-9585.	13.7	631
8	CuBr-Catalyzed Efficient Alkynylation of sp3Câ^'H Bonds Adjacent to a Nitrogen Atom. Journal of the American Chemical Society, 2004, 126, 11810-11811.	13.7	623
9	Reactions of Câ^'H Bonds in Water. Chemical Reviews, 2007, 107, 2546-2562.	47.7	608
10	Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8928-8933.	7.1	555
11	Organic syntheses using indium-mediated and catalyzed reactions in aqueous media. Tetrahedron, 1999, 55, 11149-11176.	1.9	522
12	Highly Efficient Copper-Catalyzed Nitro-Mannich Type Reaction:Â Cross-Dehydrogenative-Coupling between sp3Câ^'H Bond and sp3Câ^'H Bond. Journal of the American Chemical Society, 2005, 127, 3672-3673.	13.7	517
13	Enantioselective Direct-Addition of Terminal Alkynes to Imines Catalyzed by Copper(I)pybox Complex in Water and in Toluene. Journal of the American Chemical Society, 2002, 124, 5638-5639.	13.7	505
14	CuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines via Cross-Dehydrogenative Coupling between sp3Câ^'H and sp2Câ^'H Bonds. Journal of the American Chemical Society, 2005, 127, 6968-6969.	13.7	486
15	Aqueous Barbier-Grignard type reaction: Scope, mechanism, and synthetic applications. Tetrahedron, 1996, 52, 5643-5668.	1.9	485
16	The First Silver-Catalyzed Three-Component Coupling of Aldehyde, Alkyne, and Amine. Organic Letters, 2003, 5, 4473-4475.	4.6	445
17	Highly Efficient Oxidative Amidation of Aldehydes with Amine Hydrochloride Salts. Journal of the American Chemical Society, 2006, 128, 13064-13065.	13.7	416
18	DDQ-Mediated Direct Cross-Dehydrogenative-Coupling (CDC) between Benzyl Ethers and Simple Ketones. Journal of the American Chemical Society, 2006, 128, 4242-4243.	13.7	387

#	Article	IF	Citations
19	Gold-catalyzed reactions of C–H bonds. Tetrahedron, 2008, 64, 4917-4938.	1.9	378
20	Catalytic Enantioselective Alkynylation of Prochiral sp3Câ^'H Bonds Adjacent to a Nitrogen Atom. Organic Letters, 2004, 6, 4997-4999.	4.6	356
21	The Development of Catalytic Nucleophilic Additions of Terminal Alkynes in Water. Accounts of Chemical Research, 2010, 43, 581-590.	15.6	355
22	FeCl ₂ â€Catalyzed Selective CC Bond Formation by Oxidative Activation of a Benzylic CH Bond. Angewandte Chemie - International Edition, 2007, 46, 6505-6507.	13.8	348
23	Functionalizing Glycine Derivatives by Direct CC Bond Formation. Angewandte Chemie - International Edition, 2008, 47, 7075-7078.	13.8	313
24	Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chemistry, 2010, 12, 570.	9.0	291
25	The Copperâ€Catalyzed Decarboxylative Coupling of the sp ³ â€Hybridized Carbon Atoms of αâ€Amino Acids. Angewandte Chemie - International Edition, 2009, 48, 792-795.	13.8	284
26	Highly Efficient Cross-Dehydrogenative-Coupling between Ethers and Active Methylene Compounds. Angewandte Chemie - International Edition, 2006, 45, 1949-1952.	13.8	275
27	Simple and Clean Photoinduced Aromatic Trifluoromethylation Reaction. Journal of the American Chemical Society, 2016, 138, 5809-5812.	13.7	271
28	Catalytic Allylic Alkylation via the Cross-Dehydrogenative-Coupling Reaction between Allylic sp3Câ^'H and Methylenic sp3Câ^'H Bonds. Journal of the American Chemical Society, 2006, 128, 56-57.	13.7	262
29	Highly efficient Grignard-type imine additions via C–H activation in water and under solvent-free conditions. Chemical Communications, 2002, , 268-269.	4.1	260
30	Copper catalyzed oxidative alkylation of sp3 C–H bond adjacent to a nitrogen atom using molecular oxygen in water. Green Chemistry, 2007, 9, 1047.	9.0	247
31	Rutheniumâ€Catalyzed Oxidative Crossâ€Coupling of Chelating Arenes and Cycloalkanes. Angewandte Chemie - International Edition, 2008, 47, 6278-6282.	13.8	247
32	Green chemistry: The development of cross-dehydrogenative coupling (CDC) for chemical synthesis. Pure and Applied Chemistry, 2006, 78, 935-945.	1.9	233
33	Cross-Dehydrogenative Coupling Reactions of sp3-Hybridized C–H Bonds. Topics in Current Chemistry, 2009, 292, 281-302.	4.0	231
34	Copper-catalyzed aerobic phosphonation of sp3 C–H bonds. Chemical Communications, 2009, , 4124.	4.1	226
35	Palladium-Catalyzed Methylation of Aryl Câ^'H Bond by Using Peroxides. Journal of the American Chemical Society, 2008, 130, 2900-2901.	13.7	225
36	Quasi-Nature Catalysis:  Developing Câ^'C Bond Formations Catalyzed by Late Transition Metals in Air and Water. Accounts of Chemical Research, 2002, 35, 533-538.	15.6	219

#	Article	IF	Citations
37	Highly Efficient Addition of Activated Methylene Compounds to Alkenes Catalyzed by Gold and Silver. Journal of the American Chemical Society, 2004, 126, 6884-6885.	13.7	217
38	Gold(III)-Catalyzed Double Hydroamination of o-Alkynylaniline with Terminal Alkynes Leading to N-Vinylindoles. Organic Letters, 2007, 9, 627-630.	4.6	215
39	Site-specific C-functionalization of free-(NH) peptides and glycine derivatives via direct C–H bond functionalization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4106-4111.	7.1	204
40	Novel "Umpolung" in C-C Bond Formation Catalyzed by Triphenylphosphine. Journal of the American Chemical Society, 1994, 116, 3167-3168.	13.7	203
41	Asymmetric Catalysis Special Feature Part II: Cu(I)-catalyzed direct addition and asymmetric addition of terminal alkynes to imines. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5749-5754.	7.1	201
42	Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. Journal of the American Chemical Society, 1994, 116, 10819-10820.	13.7	197
43	Coupling of Nitrogen Heteroaromatics and Alkanes without Transition Metals: A New Oxidative Crossâ€Coupling at CH/CH Bonds. Chemistry - A European Journal, 2009, 15, 333-337.	3.3	196
44	An Adventure in Sustainable Cross-Coupling of Phenols and Derivatives via Carbon–Oxygen Bond Cleavage. ACS Catalysis, 2017, 7, 510-519.	11.2	193
45	Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide–alkyne click reaction in water. Green Chemistry, 2012, 14, 622.	9.0	186
46	En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions. Journal of Organic Chemistry, 2019, 84, 12705-12721.	3.2	186
47	Water-Triggered and Gold(I)-Catalyzed Cascade Addition/Cyclization of Terminal Alkynes withortho-Alkynylaryl Aldehyde. Organic Letters, 2006, 8, 1953-1955.	4.6	181
48	Copper-Catalyzed Oxidative sp ³ Câ^'H Bond Arylation with Aryl Boronic Acids. Organic Letters, 2008, 10, 3661-3663.	4.6	180
49	Palladiumâ€Catalyzed Oxidative <i>sp</i> ² CH Bond Acylation with Aldehydes. Advanced Synthesis and Catalysis, 2010, 352, 1145-1149.	4.3	178
50	Copper atalyzed Highly Regioselective Oxidative CH Bond Amidation of 2â€Arylpyridine Derivatives and 1â€Methylindoles. Advanced Synthesis and Catalysis, 2010, 352, 632-636.	4.3	177
51	Three-component coupling of aldehyde, alkyne, and amine catalyzed by silver in ionic liquid. Tetrahedron Letters, 2004, 45, 2443-2446.	1.4	174
52	Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) between Tetrahydroisoquinolines and Activated Methylene Compounds. European Journal of Organic Chemistry, 2005, 2005, 3173-3176.	2.4	173
53	Transformations of Less-Activated Phenols and Phenol Derivatives via C–O Cleavage. Chemical Reviews, 2020, 120, 10454-10515.	47.7	173
54	Fe ₃ O ₄ Nanoparticle-Supported Copper(I) Pybox Catalyst: Magnetically Recoverable Catalyst for Enantioselective Direct-Addition of Terminal Alkynes to Imines. Organic Letters, 2011, 13, 442-445.	4.6	171

#	Article	IF	Citations
55	Perspectives on green synthesis and catalysis. Green Synthesis and Catalysis, 2020, 1, 1-11.	6.8	168
56	Sc(OTf) ₃ -Catalyzed Direct Alkylation of Quinolines and Pyridines with Alkanes. Organic Letters, 2009, 11, 1171-1174.	4.6	160
57	Palladium-Catalyzed Oxidative <i>sp</i> ² Câ^'H Bond Acylation with Alcohols. Organic Letters, 2011, 13, 1614-1617.	4.6	160
58	Formal Direct Crossâ€Coupling of Phenols with Amines. Angewandte Chemie - International Edition, 2015, 54, 14487-14491.	13.8	157
59	Photo-induced Metal-Catalyst-Free Aromatic Finkelstein Reaction. Journal of the American Chemical Society, 2015, 137, 8328-8331.	13.7	157
60	A Silver-Catalyzed Domino Route toward 1,2-Dihydroquinoline Derivatives from Simple Anilines and Alkynes. Organic Letters, 2005, 7, 2675-2678.	4.6	155
61	Conversion of carbon dioxide and olefins into cyclic carbonates in water. Green Chemistry, 2007, 9, 213-215.	9.0	155
62	Studies on Cu-catalyzed asymmetric alkynylation of tetrahydroisoquinoline derivatives. Tetrahedron: Asymmetry, 2006, 17, 590-597.	1.8	154
63	Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH. CheM, 2017, 2, 688-702.	11.7	153
64	Catalyst-Free and Redox-Neutral Innate Trifluoromethylation and Alkylation of Aromatics Enabled by Light. Journal of the American Chemical Society, 2017, 139, 14315-14321.	13.7	153
65	Highly Efficient Direct Alkylation of Activated Methylene by Cycloalkanes. European Journal of Organic Chemistry, 2007, 2007, 4654-4657.	2.4	152
66	Magnesium-Mediated Carbonâ "Carbon Bond Formation in Aqueous Media: Â Barbierâ "Grignard Allylation and Pinacol Coupling of Aldehydes. Journal of Organic Chemistry, 1999, 64, 3230-3236.	3.2	146
67	Grignardâ€Type Arylation of Aldehydes <i>via</i> a Rhodiumâ€Catalyzed CH Activation under Mild Conditions. Advanced Synthesis and Catalysis, 2011, 353, 1269-1273.	4.3	143
68	A Novel Iron-Catalyzed Decarboxylative Csp ³ â^'Csp ² Coupling of Proline Derivatives and Naphthol. Organic Letters, 2009, 11, 3246-3249.	4.6	142
69	Rhodium-Catalyzed Oxidative Câ^'H Arylation of 2-Arylpyridine Derivatives via Decarbonylation of Aromatic Aldehydes. Journal of the American Chemical Society, 2010, 132, 12212-12213.	13.7	142
70	A Remarkably Efficient Coupling of Acid Chlorides with Alkynes in Water. Organic Letters, 2004, 6, 3151-3153.	4.6	140
71	Palladium-catalyzed direct oxidative Heck–Cassar–Sonogashira type alkynylation of indoles with alkynes under oxygen. Chemical Communications, 2010, 46, 4184.	4.1	139
72	Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chemical Science, 2015, 6, 4174-4178.	7.4	139

#	Article	IF	Citations
73	Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature. Journal of the American Chemical Society, 2017, 139, 8621-8627.	13.7	139
74	Photoinduced Conversion of Methane into Benzene over GaN Nanowires. Journal of the American Chemical Society, 2014, 136, 7793-7796.	13.7	136
75	Pd-Catalyzed Synthesis of Aryl Amines via Oxidative Aromatization of Cyclic Ketones and Amines with Molecular Oxygen. Organic Letters, 2012, 14, 5606-5609.	4.6	132
76	Copperâ€Catalyzed Fourâ€Component Coupling between Aldehydes, Amines, Alkynes, and Carbon Dioxide. Advanced Synthesis and Catalysis, 2008, 350, 1503-1506.	4.3	131
77	Cross-dehydrogenative coupling: a sustainable reaction for C–C bond formations. Green Chemistry, 2021, 23, 6789-6862.	9.0	130
78	Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds. Nature Chemistry, 2017, 9, 374-378.	13.6	129
79	Phosphine-Triggered Complete Chemo-Switch:  From Efficient Aldehydeâ^'Alkyneâ^'Amine Coupling to Efficient Aldehydeâ^'Alkyne Coupling in Water. Organic Letters, 2005, 7, 4395-4398.	4.6	127
80	Empowering a transition-metal-free coupling between alkyne and alkyl iodide with light in water. Nature Communications, 2015, 6, 6526.	12.8	125
81	Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines. Organic and Biomolecular Chemistry, 2015, 13, 447-451.	2.8	124
82	Ruthenium-Catalyzed Para-Selective Oxidative Cross-Coupling of Arenes and Cycloalkanes. Organic Letters, 2011, 13, 4977-4979.	4.6	123
83	Gold- and Silver-Catalyzed Highly Regioselective Addition of Active Methylenes to Dienes, Triene, and Cyclic Enol Ethers. Organic Letters, 2005, 7, 673-675.	4.6	122
84	Diacetyl as a "traceless―visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions. Chemical Science, 2019, 10, 5018-5024.	7.4	122
85	Catalyzed Reactions of Alkynes in Water. Advanced Synthesis and Catalysis, 2006, 348, 1459-1484.	4.3	120
86	An Olefination via Ruthenium-Catalyzed Decarbonylative Addition of Aldehydes to Terminal Alkynes. Journal of the American Chemical Society, 2009, 131, 15092-15093.	13.7	118
87	Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chemical Reviews, 2021, 121, 12548-12680.	47.7	118
88	A concise chemical synthesis of $(+)$ -3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN). Journal of the Chemical Society Chemical Communications, 1992, , 747.	2.0	117
89	Copper-catalyzed oxidative esterification of alcohols with aldehydes activated by Lewis acids. Tetrahedron Letters, 2007, 48, 1033-1035.	1.4	117
90	Direct Synthesis of Aryl Ketones by Palladiumâ€Catalyzed Desulfinative Addition of Sodium Sulfinates to Nitriles. Chemistry - A European Journal, 2011, 17, 7996-7999.	3.3	117

#	Article	IF	Citations
91	Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air. Tetrahedron Letters, 2009, 50, 2895-2898.	1.4	116
92	Diastereoselective Synthesis of Polysubstituted Tetrahydropyrans and Thiacyclohexanes via Indium Trichloride Mediated Cyclizations 1. Journal of Organic Chemistry, 2001, 66, 739-747.	3.2	114
93	Propargyl Amine Synthesis Catalysed by Gold and Copper Thin Films by Using Microwaveâ€Assisted Continuousâ€Flow Organic Synthesis (MACOS). Chemistry - A European Journal, 2010, 16, 126-133.	3.3	114
94	Aerobic and Electrochemical Oxidative Crossâ€Dehydrogenativeâ€Coupling (CDC) Reaction in an Imidazoliumâ€Based Ionic Liquid. Chemistry - A European Journal, 2010, 16, 8162-8166.	3.3	113
95	Aldehyde- and Ketone-Induced Tandem Decarboxylation-Coupling (Csp ³ â^'Csp) of Natural α-Amino Acids and Alkynes. Journal of Organic Chemistry, 2010, 75, 783-788.	3.2	112
96	Rhodium-Catalyzed Xanthone Formation from 2-Aryloxybenzaldehydes via Cross-Dehydrogenative Coupling (CDC). Organic Letters, 2012, 14, 902-905.	4.6	112
97	Diastereoselective Synthesis of α-Oxyaminesvia Gold-, Silver- and Copper-Catalyzed, Three-Component Couplings of α-Oxyaldehydes, Alkynes, and Amines in Water. Advanced Synthesis and Catalysis, 2006, 348, 1528-1532.	4.3	111
98	Palladium-Catalyzed Minisci Reaction with Simple Alcohols. Organic Letters, 2011, 13, 4581-4583.	4.6	111
99	Catalytic Aerobic Synthesis of Aromatic Ethers from Nonâ€Aromatic Precursors. Angewandte Chemie - International Edition, 2012, 51, 7537-7540.	13.8	110
100	Metal-Free Markovnikov-Type Alkyne Hydration under Mild Conditions. Organic Letters, 2016, 18, 2184-2187.	4.6	109
101	Carbonâ^'Carbon Bond Formation via Palladium-Catalyzed Reductive Coupling in Air. Organic Letters, 1999, 1, 1133-1135.	4.6	108
102	Remarkable Electronic Effect on Rhodium-Catalyzed Carbonyl Additions and Conjugated Additions with Arylmetallic Reagents. Journal of the American Chemical Society, 2001, 123, 7451-7452.	13.7	104
103	Copperâ€Catalyzed Crossâ€Dehydrogenative Coupling (CDC) of Alkynes and Benzylic CH Bonds. Advanced Synthesis and Catalysis, 2010, 352, 1446-1450.	4.3	104
104	A Highly Selective Fluorescent Chemosensor for K+ from a Bis-15-Crown-5 Derivative. Journal of the American Chemical Society, 1999, 121, 5599-5600.	13.7	103
105	InCl3-Catalyzed Domino Reaction of Aromatic Amines with Cyclic Enol Ethers in Water:Â A Highly Efficient Synthesis of New 1,2,3,4-Tetrahydroquinoline Derivatives. Journal of Organic Chemistry, 2002, 67, 3969-3971.	3.2	103
106	Highly Efficient Gold-Catalyzed Atom-Economical Annulation of Phenols with Dienes. Organic Letters, 2006, 8, 2397-2399.	4.6	103
107	Rhodium(III)â€Catalyzed C(<i>>sp</i> ²)H Activation and Electrophilic Amidation with <i>N</i> â€Fluorobenzenesulfonimide. Advanced Synthesis and Catalysis, 2013, 355, 869-873.	4.3	103
108	Grignard type reaction via C–H bond activation in water. Green Chemistry, 2002, 4, 39-41.	9.0	102

#	Article	IF	CITATIONS
109	Cu(I)Br mediated coupling of alkynes with N-acylimine and N-acyliminium ions in water. Tetrahedron Letters, 2002, 43, 5731-5733.	1.4	102
110	Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions. Tetrahedron Letters, 2006, 47, 13-17.	1.4	101
111	A Novel Stereoselective Cyclization to Functionalized Dihydropyrans. Organic Letters, 1999, 1, 993-995.	4.6	98
112	Highly Stereoselective Oxidative Esterification of Aldehydes with \hat{l}^2 -Dicarbonyl Compounds. Journal of Organic Chemistry, 2006, 71, 6266-6268.	3.2	98
113	Catalytic dehydrogenative aromatization: an alternative route to functionalized arenes. Organic Chemistry Frontiers, 2015, 2, 279-287.	4.5	98
114	En Route to a Practical Primary Alcohol Deoxygenation. Journal of the American Chemical Society, 2016, 138, 5433-5440.	13.7	98
115	A Novel Rhodiumâ€Catalyzed Cascade Cyclization: Direct Synthesis of 3â€Substituted Phthalides from Aldehydes and Aromatic Acids. Advanced Synthesis and Catalysis, 2012, 354, 2933-2938.	4.3	96
116	Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 2013, 15, 2141.	9.0	96
117	Nitrogen Photofixation over IIIâ€Nitride Nanowires Assisted by Ruthenium Clusters of Low Atomicity. Angewandte Chemie - International Edition, 2017, 56, 8701-8705.	13.8	96
118	Simple and Direct sp ³ Câ€"H Bond Arylation of Tetrahydroisoquinolines and Isochromans via 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone Oxidation under Mild Conditions. Organic Letters, 2013, 15, 3650-3653.	4.6	95
119	Copper-Catalyzed Oxidative C(sp ³)–H Functionalization for Facile Synthesis of 1,2,4-Triazoles and 1,3,5-Triazines from Amidines. Organic Letters, 2015, 17, 2894-2897.	4.6	94
120	Chemosensors for Lead(II) and Alkali Metal Ions Based on Self-Assembling Fluorescence Enhancement (SAFE). Journal of Physical Chemistry B, 2002, 106, 833-843.	2.6	91
121	Novel 1,3-dipolar cycloaddition of diazocarbonyl compounds to alkynes catalyzed by InCl3 in water. Chemical Communications, 2004, , 394.	4.1	91
122	Rhodium(I)â€Catalyzed Regiospecific Dimerization of Aromatic Acids: Two Direct CH Bond Activations in Water. Angewandte Chemie - International Edition, 2015, 54, 5718-5721.	13.8	91
123	Aldol- and Mannich-Type Reactions via in Situ Olefin Migration in Ionic Liquid. Organic Letters, 2003, 5, 657-660.	4.6	90
124	Palladiumâ€Catalyzed Formal Crossâ€Coupling of Diaryl Ethers with Amines: Slicing the 4â€ <i>O</i> â€5 Linkage in Lignin Models. Angewandte Chemie - International Edition, 2018, 57, 3752-3757.	13.8	90
125	Chemistry Takes a Bath: Reactions in Aqueous Media. Journal of Organic Chemistry, 2018, 83, 7319-7322.	3.2	90
126	Highly effective synthesis of 4-halo-tetrahydropyrans via a highly diastereoselective in situ Prins-type cyclization reaction. Tetrahedron Letters, 1999, 40, 1627-1630.	1.4	89

#	Article	IF	Citations
127	Rhodium catalyzed conjugated addition of unsaturated carbonyl compounds by triphenylbismuth in aqueous media and under an air atmosphere. Tetrahedron Letters, 2001, 42, 781-784.	1.4	89
128	"On water―promoted direct alkynylation of isatins catalyzed by NHC–silver complexes for the efficient synthesis of 3-hydroxy-3-ethynylindolin-2-ones. Green Chemistry, 2011, 13, 549.	9.0	88
129	Palladium-catalyzed benzothieno[2,3-b]indole formation via dehydrative–dehydrogenative double C–H sulfuration using sulfur powder, indoles and cyclohexanones. Chemical Communications, 2015, 51, 1031-1034.	4.1	88
130	"On Water―Promoted Direct Coupling of Indoles with 1,4-Benzoquinones without Catalyst. European Journal of Organic Chemistry, 2006, 2006, 869-873.	2.4	87
131	The Barbierâ^'Grignard-Type Carbonyl Alkylation Using Unactivated Alkyl Halides in Water. Journal of the American Chemical Society, 2003, 125, 4062-4063.	13.7	86
132	Umpolung Addition of Aldehydes to Aryl Imines. Angewandte Chemie - International Edition, 2017, 56, 6260-6263.	13.8	86
133	A highly stereoselective, novel coupling reaction between alkynes and aldehydes. Tetrahedron Letters, 2002, 43, 1613-1615.	1.4	85
134	Rhodium-catalyzed C–H activation and conjugate addition under mild conditions. Organic and Biomolecular Chemistry, 2011, 9, 7176.	2.8	85
135	Synthesis of Indene Frameworks via Rhodium-Catalyzed Cascade Cyclization of Aromatic Ketone and Unsaturated Carbonyl Compounds. Organic Letters, 2013, 15, 1476-1479.	4.6	85
136	Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water—"silver mirror― From stoichiometric to catalytic. Science Advances, 2015, 1, e1500020.	10.3	85
137	Manganese-Mediated Carbonâ^'Carbon Bond Formation in Aqueous Media:Â Chemoselective Allylation and Pinacol Coupling of Aryl Aldehydes. Journal of Organic Chemistry, 1998, 63, 7498-7504.	3.2	84
138	Unexpected Barbierâ 'Grignard Allylation of Aldehydes with Magnesium in Water. Journal of the American Chemical Society, 1998, 120, 9102-9103.	13.7	84
139	Gold(I)-Catalyzed Annulation of Salicylaldehydes and Aryl Acetylenes as an Expedient Route to Isoflavanones. Angewandte Chemie - International Edition, 2007, 46, 1117-1119.	13.8	84
140	Regio- and Diastereoselective Allenylation of Aldehydes in Aqueous Media:Â Total Synthesis of (+)-Goniofufurone1. Journal of Organic Chemistry, 1998, 63, 7472-7480.	3.2	83
141	Manganese-Mediated Reactions in Aqueous Media:Â Chemoselective Allylation and Pinacol Coupling of Aryl Aldehydes. Journal of Organic Chemistry, 1997, 62, 8632-8633.	3.2	82
142	Transition-Metal-Free C–C, C–O, and C–N Cross-Couplings Enabled by Light. Journal of the American Chemical Society, 2019, 141, 6755-6764.	13.7	82
143	A cross-dehydrogenative C(sp3)â^'H heteroarylation via photo-induced catalytic chlorine radical generation. Nature Communications, 2021, 12, 4010.	12.8	80
144	A Pd(0)-Catalyzed Direct Dehydrative Coupling of Terminal Alkynes with Allylic Alcohols To Access 1,4-Enynes. Journal of the American Chemical Society, 2013, 135, 12536-12539.	13.7	79

#	Article	IF	CITATIONS
145	The Barbier–Grignard-type arylation of aldehydes using unactivated aryl iodides in water. Nature Communications, 2014, 5, 4254.	12.8	79
146	Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water. Angewandte Chemie - International Edition, 2016, 55, 10806-10810.	13.8	79
147	Novel Carbocyle Enlargement in Aqueous Medium. Journal of the American Chemical Society, 1996, 118, 4216-4217.	13.7	78
148	Cellulose Nanocrystals Incorporating Fluorescent Methylcoumarin Groups. ACS Sustainable Chemistry and Engineering, 2013, 1, 1160-1164.	6.7	78
149	Highly Efficient, Reversible Addition of Activated Methylene Compounds to Styrene Derivatives Catalyzed by Silver Catalysts. Journal of Organic Chemistry, 2005, 70, 5752-5755.	3.2	77
150	Ruthenium-Catalyzed Tertiary Amine Formation from Nitroarenes and Alcohols. Organic Letters, 2010, 12, 4888-4891.	4.6	76
151	Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. Chemical Society Reviews, 2021, 50, 10955-10982.	38.1	75
152	Grignard-Type Carbonyl Phenylation in Water and under an Air Atmosphere. Journal of the American Chemical Society, 2000, 122, 9538-9539.	13.7	74
153	Efficient Preparation of the Isoindoline Framework <i>via</i> a Six Component, Tandem Double A ³ â€Coupling and [2+2+2] Cycloaddition Reaction. Advanced Synthesis and Catalysis, 2008, 350, 370-374.	4.3	74
154	Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. Organic Letters, 2019, 21, 1301-1305.	4.6	74
155	Direct conversion of phenols into primary anilines with hydrazine catalyzed by palladium. Chemical Science, 2019, 10, 4775-4781.	7.4	73
156	Conjugate addition of arylsilanes to unsaturated carbonyl compounds catalyzed by rhodium in air and water. Chemical Communications, 2001, , 2348-2349.	4.1	69
157	A Rhodiumâ€Catalyzed Cascade Cyclization: Direct Synthesis of <i>N</i> â€Substituted Phthalimides from Isocyanates and Benzoic Acids. Advanced Synthesis and Catalysis, 2014, 356, 723-728.	4.3	69
158	A Convenient Synthesis of <i>N</i> â€Aryl Benzamides by Rhodium atalyzed <i>ortho</i> â€Amidation and Decarboxylation of Benzoic Acids. Chemistry - A European Journal, 2015, 21, 1900-1903.	3.3	69
159	Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. Angewandte Chemie - International Edition, 2017, 56, 6302-6306.	13.8	69
160	Facile and selective copper–palladium catalyzed addition of terminal alkynes to activated alkynes in water. Tetrahedron Letters, 2004, 45, 2771-2774.	1.4	68
161	Microwave-Assisted Synthesis of Magnetic Carboxymethyl Cellulose-Embedded Ag–Fe ₃ O ₄ Nanocatalysts for Selective Carbonyl Hydrogenation. ACS Sustainable Chemistry and Engineering, 2016, 4, 965-973.	6.7	68
162	A ³ -Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein Journal of Organic Chemistry, 2013, 9, 1388-1396.	2.2	67

#	Article	IF	CITATIONS
163	Waterâ€"the greenest solvent overall. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 118-123.	5.9	67
164	A highly efficient gold/silver-catalyzed addition of arenes to imines. Chemical Communications, 2004, , 1930.	4.1	66
165	Synthesis of Aryl-Substituted 1,4-Benzoquinonevia Water-Promoted and In(OTf)3-Catalyzedin situ Conjugate Addition-Dehydrogenation of Aromatic Compounds to 1,4-Benzoquinone in Water. Advanced Synthesis and Catalysis, 2006, 348, 229-235.	4.3	65
166	Rhodiumâ€Catalyzed Aerobic Coupling between Aldehydes and Arenesulfinic Acid Salts: A Novel Synthesis of Aryl Ketones. Advanced Synthesis and Catalysis, 2011, 353, 1701-1706.	4.3	65
167	Gallium-mediated allylation of carbonyl compounds in water. Tetrahedron Letters, 2002, 43, 5097-5099.	1.4	64
168	Suzuki Reaction Takes a"Naked Hot Bath†Coupling in High-Temperature Water without Transition Metals. Angewandte Chemie - International Edition, 2003, 42, 4856-4858.	13.8	64
169	Rutheniumâ€Catalyzed Oxidative Homoâ€Coupling of 2â€Arylpyridines. Advanced Synthesis and Catalysis, 2009, 351, 2071-2074.	4.3	64
170	Metalâ€Free Oxidative Coupling: Xanthone Formation <i>via</i> Direct Annulation of 2â€Aryloxybenzaldehyde using Tetrabutylammonium Bromide as a Promoter in Aqueous Medium. Advanced Synthesis and Catalysis, 2013, 355, 2191-2196.	4.3	64
171	Radical difluoromethylthiolation of aromatics enabled by visible light. Chemical Science, 2018, 9, 5781-5786.	7.4	64
172	Palladiumâ€Catalyzed Defluorinative Alkylation of <i>>gem</i> >â€Difluorocyclopropanes: Switching Regioselectivity via Simple Hydrazones. Angewandte Chemie - International Edition, 2021, 60, 13098-13104.	13.8	64
173	Aqueous Asymmetric Mukaiyama Aldol Reaction Catalyzed by Chiral Gallium Lewis Acid with Trost-Type Semi-Crown Ligands. Advanced Synthesis and Catalysis, 2005, 347, 1247-1256.	4.3	63
174	Iron-catalyzed arylation of benzoazoles with aromatic aldehydes using oxygen as oxidant. Green Chemistry, 2012, 14, 1577.	9.0	62
175	Ruthenium-catalyzed umpolung carboxylation of hydrazones with CO ₂ . Chemical Science, 2018, 9, 4873-4878.	7.4	62
176	Scandium triflate catalyzed in situ Prins-type cyclization: formations of 4-tetrahydropyranols and ethers. Chemical Communications, 1999, , 291-292.	4.1	61
177	Synthesis of tetrahydropyran derivatives via a novel indium trichloride mediated cross-cyclization between epoxides and homoallyl alcohols. Tetrahedron Letters, 2001, 42, 793-796.	1.4	61
178	Dual Câ€"H activations of electron-deficient heteroarenes: palladium-catalyzed oxidative cross coupling of thiazoles with azine N-oxides. Tetrahedron, 2013, 69, 4436-4444.	1.9	61
179	Novel Synthesis of α-Amino Acids via Catalysis in Air and Water. Organic Letters, 2001, 3, 2037-2039.	4.6	60
180	Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium atalyzed Allylic Alkylation. Angewandte Chemie - International Edition, 2018, 57, 16520-16524.	13.8	60

#	Article	IF	CITATIONS
181	Aromatic Chemistry in the Excited State: Facilitating Metalâ€Free Substitutions and Crossâ€Couplings. Angewandte Chemie - International Edition, 2020, 59, 1786-1796.	13.8	60
182	Diastereoselective Synthesis of 2,4-Disubstituted Tetrahydropyranols and Ethers via a Prins-Type Cyclization Catalyzed by Scandium Triflate. Tetrahedron, 2000, 56, 2403-2411.	1.9	59
183	The effect of crown-ether on the palladium-catalyzed Ullmann-type coupling mediated by zinc in air and water. Tetrahedron Letters, 2000, 41, 4831-4834.	1.4	59
184	A highly regio- and stereoselective transition metal-catalyzed hydrosilylation of terminal alkynes under ambient conditions of air, water, and room temperature. Chemical Communications, 2003, , 1668.	4.1	59
185	Copper-catalyzed oxidative trifluoromethylation of benzylic sp3 C–H bond adjacent to nitrogen in amines. Tetrahedron Letters, 2011, 52, 1898-1900.	1.4	59
186	The first palladium-catalyzed 1,4-addition of terminal alkynes to conjugated enones. Chemical Communications, 2004, , 2362.	4.1	58
187	Thermal Nonâ€Oxidative Aromatization of Light Alkanes Catalyzed by Gallium Nitride. Angewandte Chemie - International Edition, 2014, 53, 14106-14109.	13.8	58
188	Direct dehydrogenative alkyl Heck-couplings of vinylarenes with umpolung aldehydes catalyzed by nickel. Nature Communications, 2019, 10, 715.	12.8	56
189	Recent Synthetic Applications of Catalyst-Free Photochemistry. Synlett, 2017, 28, 2714-2754.	1.8	55
190	Cross-Coupling of Phenol Derivatives with Umpolung Aldehydes Catalyzed by Nickel. ACS Catalysis, 2018, 8, 4622-4627.	11.2	55
191	Metal-Free Direct Deoxygenative Borylation of Aldehydes and Ketones. Journal of the American Chemical Society, 2020, 142, 13011-13020.	13.7	55
192	Phosphine ligand triggered oxidative decarbonylative homocoupling of aromatic aldehydes: selectively generating biaryls and diarylketones. Chemical Communications, 2011, 47, 2161.	4.1	54
193	Silver(I)â€Catalyzed Widely Applicable Aerobic 1,2â€Diol Oxidative Cleavage. Angewandte Chemie - International Edition, 2018, 57, 2616-2620.	13.8	54
194	A Fluorescent 18-Crown-6 Based Luminescence Sensor for Lanthanide Ions. Tetrahedron, 2000, 56, 7045-7049.	1.9	53
195	Water-Triggered, Counter-Anion-Controlled, and Silverâ [^] Phosphines Complex-Catalyzed Stereoselective Cascade Alkynylation/Cyclization of Terminal Alkynes with Salicylaldehydes. Journal of Organic Chemistry, 2009, 74, 3378-3383.	3.2	53
196	Site-Specific Modification of Amino Acids and Peptides by Aldehyde–Alkyne–Amine Coupling under Ambient Aqueous Conditions. Organic Letters, 2012, 14, 3000-3003.	4.6	53
197	Functionalization of cellulose nanocrystal films via "thiol–ene―click reaction. RSC Advances, 2014, 4, 6965.	3.6	53
198	Phosphorylation of Glycine Derivatives <i>via</i> Copper(I)â€Catalyzed C <i>sp</i> ³ â^'H Bond Functionalization. Advanced Synthesis and Catalysis, 2016, 358, 2553-2557.	4.3	53

#	Article	IF	CITATIONS
199	Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization–Rearomatization Processes. Accounts of Chemical Research, 2020, 53, 2395-2413.	15.6	53
200	Substituent effects on keto–enol tautomerization of β-diketones from X-ray structural data and DFT calculations. New Journal of Chemistry, 2008, 32, 694.	2.8	52
201	Silver-Catalyzed Oxidative Coupling of Terminal Aromatic Alkynes and Benzylic Ethers. Heterocycles, 2010, 82, 555.	0.7	52
202	Direct sp ³ Câ€"H bond arylation, alkylation, and amidation of tetrahydroisoquinolines mediated by hypervalent iodine(<scp>iii</scp>) under mild conditions. Organic and Biomolecular Chemistry, 2014, 12, 2189-2192.	2.8	52
203	Fe ^{III} â€Catalyzed Crossâ€Dehydrogenative Arylation (CDA) between Oxindoles and Arenes under an Air Atmosphere. Chemistry - A European Journal, 2015, 21, 16744-16748.	3.3	52
204	Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage. Journal of the American Chemical Society, 2015, 137, 7576-7579.	13.7	52
205	Ruthenium(<scp>ii</scp>)-catalyzed olefination <i>via</i> carbonyl reductive cross-coupling. Chemical Science, 2017, 8, 8193-8197.	7.4	52
206	Palladium-catalyzed coupling of aryl halides with arylhalosilanes in air and water. Tetrahedron Letters, 2002, 43, 403-405.	1.4	51
207	Quasi-nature catalysis: conjugated addition of unsaturated carbonyl compounds with aryl and vinyltin reagents catalyzed by rhodium in air and water. Tetrahedron Letters, 2001, 42, 4459-4462.	1.4	50
208	Direct formation of tetrahydropyranols via catalysis in ionic liquid. Tetrahedron Letters, 2002, 43, 4993-4996.	1.4	50
209	The First Decarbonylative Coupling of Aldehydes and Norbornenes Catalyzed by Rhodium. Advanced Synthesis and Catalysis, 2010, 352, 2899-2904.	4.3	50
210	Formal Cross-Coupling of Diaryl Ethers with Ammonia by Dual C(Ar)–O Bond Cleavages. ACS Catalysis, 2018, 8, 8873-8878.	11.2	50
211	Twoâ€inâ€One Strategy for Palladiumâ€Catalyzed Câ^'H Functionalization in Water. Angewandte Chemie - International Edition, 2019, 58, 2859-2863.	13.8	50
212	Novel chiral gallium Lewis acid catalysts with semi-crown ligands for aqueous asymmetric Mukaiyama aldol reactions. Chemical Communications, 2002, , 2994-2995.	4.1	49
213	Microwave-assisted Cu (I) Catalyzed Solvent-free Three Component Coupling of Aldehyde, Alkyne and Amine. QSAR and Combinatorial Science, 2004, 23, 891-894.	1.4	49
214	A novel catalytic decarbonylative Heck-type reaction and conjugate addition of aldehydes to unsaturated carbonyl compounds. Tetrahedron Letters, 2010, 51, 5486-5489.	1.4	49
215	Gold-catalyzed tandem reactions of amide–aldehyde–alkyne coupling and cyclization-synthesis of 2,4,5-trisubstituted oxazoles. Chemical Science, 2015, 6, 7332-7335.	7.4	49
216	Exploration of New Chemical Reactivities for Sustainable Molecular Transformations. CheM, 2016, 1, 423-437.	11.7	49

#	Article	IF	Citations
217	Metalâ€Free and Redoxâ€Neutral Conversion of Organotrifluoroborates into Radicals Enabled by Visible Light. Angewandte Chemie - International Edition, 2018, 57, 13499-13503.	13.8	49
218	Carbonyl umpolung as an organometallic reagent surrogate. Chemical Society Reviews, 2021, 50, 10733-10742.	38.1	49
219	Silverâ€Catalyzed Hydrogenation of Aldehydes in Water. Angewandte Chemie - International Edition, 2013, 52, 11871-11874.	13.8	48
220	Ruthenium-catalyzed isomerization of homoallylic alcohols in water. Tetrahedron, 1998, 54, 5129-5142.	1.9	47
221	Calix[6]arene derivatives bearing sulfonate and alkyl groups as surfactants in Sc(OTf)3-catalyzed Mukaiyama aldol reactions in water. Tetrahedron Letters, 2000, 41, 2529-2532.	1.4	47
222	Carbon-Carbon Bond Formation via Palladium-Catalyzed Reductive Coupling of Aryl Halides in Air and Water. Advanced Synthesis and Catalysis, 2002, 344, 399-405.	4.3	47
223	Ru-Catalyzed Decarbonylative Addition of Aliphatic Aldehydes to Terminal Alkynes. Organic Letters, 2010, 12, 3176-3178.	4.6	47
224	Preparation of Dienylstannanes Via Pd Catalyzed Regio- and Stereocontrolled Addition Reactions. Synthesis, 1994, 1994, 1267-1271.	2.3	46
225	Trimethylenemethane dianion equivalent in aqueous medium. Tetrahedron Letters, 1995, 36, 517-518.	1.4	46
226	Highly efficient carbonyl allylation of 1,3-dicarbonyl compounds in aqueous medium. Tetrahedron Letters, 1995, 36, 2721-2724.	1.4	46
227	Reshuffling of Functionalities Catalyzed by a Ruthenium Complex in Water. Journal of the American Chemical Society, 1995, 117, 12867-12868.	13.7	46
228	Efficient ruthenium and copper cocatalzyed five-component coupling to form dipropargyl amines under mild conditions in water. Organic and Biomolecular Chemistry, 2007, 5, 435-437.	2.8	46
229	A Complete Switch of the Directional Selectivity in the Annulation of 2â€Hydroxybenzaldehydes with Alkynes. Angewandte Chemie - International Edition, 2014, 53, 13862-13865.	13.8	46
230	Sustainable Synthesis of Magnetic Ruthenium-Coated Iron Nanoparticles and Application in the Catalytic Transfer Hydrogenation of Ketones. ACS Sustainable Chemistry and Engineering, 2015, 3, 814-820.	6.7	46
231	Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts. Green Chemistry, 2016, 18, 129-133.	9.0	46
232	Switch in Selectivity for Formal Hydroalkylation of 1,3â€Dienes and Enynes with Simple Hydrazones. Angewandte Chemie - International Edition, 2020, 59, 6466-6472.	13.8	46
233	Efficient Trost's \hat{i}^3 -addition catalyzed by reusable polymer-supported triphenylphosphine in aqueous media. Green Chemistry, 2005, 7, 571.	9.0	45
234	Nickel-catalyzed cross-coupling of aldehydes with aryl halides via hydrazone intermediates. Chemical Communications, 2018, 54, 1750-1753.	4.1	45

#	Article	IF	CITATIONS
235	En route to metal-mediated and metal-catalysed reactions in water. Chemical Science, 2019, 10, 34-46.	7.4	45
236	Palladiumâ€Catalyzed Formal Hydroalkylation of Arylâ€Substituted Alkynes with Hydrazones. Angewandte Chemie - International Edition, 2020, 59, 14009-14013.	13.8	45
237	Photocatalytic C(sp ³) radical generation <i>via</i> C–H, C–C, and C–X bond cleavage. Chemical Science, 2022, 13, 5465-5504.	7.4	45
238	Selective Copper–N-Heterocyclic Carbene (Copper-NHC)-Catalyzed Aerobic Cleavage of β-1 Lignin Models to Aldehydes. ACS Catalysis, 2017, 7, 3344-3348.	11.2	44
239	Palladium-catalyzed 1,4-addition of terminal alkynes to unsaturated carbonyl compounds promoted by electron-rich ligands. Organic and Biomolecular Chemistry, 2008, 6, 2969.	2.8	43
240	Direct Catalytic Methanol-to-Ethanol Photo-conversion via Methyl Carbene. CheM, 2019, 5, 858-867.	11.7	43
241	Photo-induced transition-metal and photosensitizer free cross–coupling of aryl halides with disulfides. Green Synthesis and Catalysis, 2021, 2, 303-306.	6.8	43
242	Metal-Mediated Barbier-Type Carbonyl Allylation Under Solvent-Free Conditions. Synthetic Communications, 1998, 28, 2999-3009.	2.1	42
243	Synthesis of amino acids via a three-component reaction of phenols, glyoxylates and amines. Tetrahedron Letters, 2000, 41, 6715-6719.	1.4	42
244	An Annulation toward Fused Bicyclolactones. Journal of the American Chemical Society, 2005, 127, 17184-17185.	13.7	42
245	Formal aromaticity transfer for palladium-catalyzed coupling between phenols and pyrrolidines/indolines. Chemical Science, 2017, 8, 6954-6958.	7.4	42
246	N2H4 as traceless mediator for homo- and cross- aryl coupling. Nature Communications, 2018, 9, 4739.	12.8	42
247	Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
248	Metal-mediated two-atom carbocycle enlargement in aqueous medium. Tetrahedron, 1998, 54, 2347-2364.	1.9	41
249	Reflection and perspective on green chemistry development for chemical synthesis—Daoist insights. Green Chemistry, 2016, 18, 1836-1838.	9.0	41
250	FeCl ₃ -Mediated Radical Tandem Reactions of 3-Benzyl-2-oxindoles with Styrene Derivatives for the Stereoselective Synthesis of Spirocyclohexene Oxindoles. Organic Letters, 2016, 18, 1382-1385.	4.6	41
251	Palladiumâ€Catalyzed Synthesis of <i>N</i> à€Cyclohexyl Anilines from Phenols with Hydrazine or Hydroxylamine via Nâ€N/O Cleavage. Advanced Synthesis and Catalysis, 2017, 359, 3648-3653.	4.3	41
252	Nickel-Catalyzed Regioselective Hydrobenzylation of 1,3-Dienes with Hydrazones. ACS Catalysis, 2019, 9, 9199-9205.	11.2	41

#	Article	IF	CITATIONS
253	Developing metal-mediated and catalyzed reactions in air and water. Green Chemistry, 2002, 4, 1-4.	9.0	40
254	The Development of A3-Coupling (Aldehyde-Alkyne-Amine) and AA3-Coupling (Asymmetric) Tj ETQq0 0 0 rgBT /O	verlock 10 1.8) Tf 50 702 To
255	Microwave-assisted direct addition of cycloethers to alkynes. Tetrahedron Letters, 2004, 45, 7581-7584.	1.4	40
256	Rearrangement of 2â€Aryloxybenzaldehydes to 2â€Hydroxybenzophenones by Rhodiumâ€Catalyzed Cleavage of Aryloxy CO Bonds. Angewandte Chemie - International Edition, 2011, 50, 8936-8939.	13.8	40
257	Catalytic alkylation of benzylic C–H bonds with 1,3-dicarbonyl compounds utilizing oxygen as terminal oxidant. Tetrahedron Letters, 2010, 51, 1172-1175.	1.4	39
258	InCl3-catalyzed reaction of aromatic amines with cyclic hemiacetals in water: facile synthesis 1,2,3,4-tetrahydroquinoline derivatives. Tetrahedron Letters, 2003, 44, 153-156.	1.4	38
259	Ligand-promoted reaction on silver nanoparticles: phosphine-promoted, silver nanoparticle-catalyzed cyclization of 2-(1-hydroxy-3-arylprop-2-ynyl)phenols. Tetrahedron Letters, 2010, 51, 6722-6725.	1.4	38
260	Iridiumâ€Catalyzed Direct Dehydroxylation of Alcohols. European Journal of Organic Chemistry, 2013, 2013, 6496-6500.	2.4	38
261	Photoâ€induced Carboiodination: A Simple Way to Synthesize Functionalized Dihydrobenzofurans and Indolines. Chemistry - A European Journal, 2016, 22, 15252-15256.	3.3	38
262	Carboxylâ€Directed Conjugate Addition of Câ^'H Bonds to <i>α</i> , <i>β</i> â€Unsaturated Ketones in Air and Water. Advanced Synthesis and Catalysis, 2018, 360, 1358-1363.	4.3	38
263	Synthesis of 6â€Trifluoromethylphenanthridines through Radical Trifluoromethylation of Isocyanides with Sodium Triflinate under Visible Light. European Journal of Organic Chemistry, 2018, 2018, 2498-2503.	2.4	38
264	An Old Dog with New Tricks: Enjoin Wolff–Kishner Reduction for Alcohol Deoxygenation and C–C Bond Formations. Synlett, 2019, 30, 1508-1524.	1.8	38
265	Dearomatization–Rearomatization Strategy for Reductive Cross-Coupling of Indoles with Ketones in Water. Organic Letters, 2019, 21, 2302-2306.	4.6	38
266	Palladium catalysed polymerization of aryl diodides with acetylene gas in aqueous medium: a novel synthesis of areneethynylene polymers and oligomers. Chemical Communications, 1997, , 1569-1570.	4.1	37
267	Alkynes as an eco-compatible "on-call―functionality orthogonal to biological conditions in water. Chemical Science, 2011, 2, 1241-1249.	7.4	37
268	Transitionâ€Metalâ€Free Coupling of Alkynes with αâ€Bromo Carbonyl Compounds: An Efficient Approach towards β,γâ€Alkynoates and Allenoates. Chemistry - A European Journal, 2016, 22, 5888-5893.	3.3	37
269	Palladiumâ€Catalyzed Formal Crossâ€Coupling of Diaryl Ethers with Amines: Slicing the 4â€∢i>Oà€5 Linkage in Lignin Models. Angewandte Chemie, 2018, 130, 3814-3819.	2.0	37
270	Photo-induced transition-metal and external photosensitizer-free organic reactions. Organic Chemistry Frontiers, 2021, 8, 3594-3613.	4.5	37

#	Article	IF	CITATIONS
271	Indium and zinc mediated one-atom carbocycle enlargement in water. Tetrahedron Letters, 1997, 38, 4735-4736.	1.4	36
272	Synthesis of \hat{l}_{\pm} -amino acid derivatives and amines via activation of simple alkyl halides by zinc in water. Chemical Communications, 2002, , 2440-2441.	4.1	36
273	Magnetically Recoverable CuFe2O4 Nanoparticles as Highly Active Catalysts for Csp3-Csp and Csp3-Csp3 Oxidative Cross-Dehydrogenative Coupling. Synlett, 2013, 24, 1637-1642.	1.8	36
274	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 3222-3228.	3.0	36
275	Iron-Catalyzed Nucleophilic Addition Reaction of Organic Carbanion Equivalents via Hydrazones. Organic Letters, 2018, 20, 3801-3805.	4.6	36
276	A novel caesium selective fluorescent chemosensor. Chemical Communications, 2000, , 695-696.	4.1	35
277	Ruthenium-Catalyzed Tandem Olefin Migration/Aldol and Mannich-Type Reactions in Water and Protic Solvents. European Journal of Organic Chemistry, 2003, 2003, 998-1003.	2.4	35
278	Water as a reaction medium for clean chemical processes. Clean Technologies and Environmental Policy, 2004, 6, 250-257.	4.1	34
279	Separation, recovery and reuse of N-heterocyclic carbene catalysts in transesterification reactions. Chemical Communications, 2009, , 6249.	4.1	34
280	Ru(II)-catalyzed ortho-amidation and decarboxylation of aromatic acids: a versatile route to meta-substituted N-aryl benzamides. Science China Chemistry, 2015, 58, 1286-1291.	8.2	34
281	A Direct Retro-Barbier Fragmentation. Journal of Organic Chemistry, 2000, 65, 5831-5833.	3.2	33
282	Aldol reaction via in situ olefin migration in water. Tetrahedron Letters, 2002, 43, 3589-3591.	1.4	33
283	Rapid syntheses of $(\hat{A}\pm)$ -pterocarpans and isoflavones via the gold-catalyzed annulation of aldehydes and alkynes. Tetrahedron Letters, 2007, 48, 8343-8346.	1.4	33
284	Photo-induced iodination of aryl halides under very mild conditions. Nature Protocols, 2016, 11, 1948-1954.	12.0	33
285	Light-enabled metal-free pinacol coupling by hydrazine. Chemical Science, 2019, 10, 10937-10943.	7.4	33
286	Dearomatizationâ€Rearomatization Strategy for <i>ortho</i> â€Selective Alkylation of Phenols with Primary Alcohols. Angewandte Chemie - International Edition, 2021, 60, 4043-4048.	13.8	33
287	Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings <i>via</i> H ₂ Release. ACS Catalysis, 2021, 11, 14148-14158.	11.2	33
288	Solvent-free direct aza-Friedel–Crafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols. Tetrahedron Letters, 2006, 47, 6791-6794.	1.4	32

#	Article	IF	CITATIONS
289	An Unusual Peroxideâ€Mediated Amination of Cycloalkanes with Nitroarenes. Advanced Synthesis and Catalysis, 2009, 351, 353-356.	4.3	32
290	Pybox ligand-promoted copper(I)-catalyzed three-component tandem coupling-annulation of terminal alkynes, amines and ortho-alkynylaryl aldehydes. Tetrahedron Letters, 2009, 50, 6791-6794.	1.4	32
291	Transitionâ€Metalâ€Free Oneâ€Pot Synthesis of Biaryls from Grignard Reagents and Substituted Cyclohexanones. Chemistry - A European Journal, 2013, 19, 7151-7155.	3.3	32
292	Hydrogen bonding promoted simple and clean photo-induced reduction of C–X bond with isopropanol. Chemical Communications, 2019, 55, 767-770.	4.1	32
293	Shining Light on the Light-Bearing Element: A Brief Review of Photomediated C–H Phosphorylation Reactions. Synthesis, 2021, 53, 1003-1022.	2.3	32
294	Indium-mediated highly diastereoselective allenylation in aqueous medium: total synthesis of (+)-goniofufurone. Chemical Communications, 1998, , 449-450.	4.1	31
295	A transition-metal-free Heck-type reaction between alkenes and alkyl iodides enabled by light in water. Organic and Biomolecular Chemistry, 2015, 13, 6170-6174.	2.8	31
296	Stepwise synthesis and characterization of oligomers based on $1,1\hat{a}\in^2$ -binaphthol with $3,3\hat{a}\in^2$ -acetylene spacer. Tetrahedron: Asymmetry, 1998, 9, 3693-3707.	1.8	30
297	Efficient Synthesis of î³,δâ€Alkynylâ€Î²â€amino Acid Derivatives by a New Copperâ€Catalyzed Amineâ€Alkyneâ€A Addition Reaction. Advanced Synthesis and Catalysis, 2008, 350, 2226-2230.	lkyne 4.3	30
298	Cu(II)-Catalyzed Allylic Silylation of Morita–Baylis–Hillman Alcohols via Dual Activation of Si–B Bond and Hydroxyl Group. Journal of Organic Chemistry, 2013, 78, 11076-11081.	3.2	30
299	Aniline Carbamates: A Versatile and Removable Motif for Palladium atalyzed Directed CH Activation. Chemistry - A European Journal, 2014, 20, 12066-12070.	3.3	30
300	Copper-catalyzed asymmetric sp ³ C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst. Beilstein Journal of Organic Chemistry, 2016, 12, 2636-2643.	2.2	30
301	Transition-Metal-Free Alkynylation of 2-Oxindoles through Radical–Radical Coupling. Journal of Organic Chemistry, 2017, 82, 2656-2663.	3.2	30
302	Indium mediated reactions in water: Synthesis of \hat{l}^2 -hydroxyl esters. Tetrahedron Letters, 1997, 38, 4731-4734.	1.4	29
303	Gold-Catalyzed Coupling of Alkynes and Acyl Iminiums. Letters in Organic Chemistry, 2005, 2, 410-414.	0.5	29
304	Development of a copper(II)-catalyzed three-component tandem synthesis of isoindolinone derivatives. Canadian Journal of Chemistry, 2012, 90, 92-99.	1.1	29
305	Catalystâ€Free Threeâ€Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummererâ€Type Rearrangement. Chemistry - A European Journal, 2016, 22, 6262-6267.	3.3	29
306	Construction of Spirocyclic Tetrahydro- \hat{l}^2 -carbolines via Cross-Annulation of Phenols with Tryptamines in Water. Organic Letters, 2019, 21, 7033-7037.	4.6	29

#	Article	IF	Citations
307	Photoinduced transition-metal- and external-photosensitizer-free intramolecular aryl rearrangement via C(Ar)–O bond cleavage. Chemical Science, 2020, 11, 5740-5744.	7.4	29
308	GaN nanowires as a reusable photoredox catalyst for radical coupling of carbonyl under blacklight irradiation. Chemical Science, 2020, 11, 7864-7870.	7.4	29
309	Methane conversion to ethylene over GaN catalysts. Effect of catalyst nitridation. Applied Catalysis A: General, 2020, 595, 117430.	4.3	29
310	Visible-Light Photoredox Catalyzed Double C–H Functionalization: Radical Cascade Cyclization of Ethers with Benzimidazole-Based Cyanamides. Organic Letters, 2021, 23, 692-696.	4.6	29
311	Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water. Angewandte Chemie, 2016, 128, 10964-10968.	2.0	28
312	Domino reaction of anilines with 3,4-dihydro-2H-pyran catalyzed by cation-exchange resin in water: an efficient synthesis of 1,2,3,4-tetrahydroquinoline derivatives. Green Chemistry, 2003, 5, 627.	9.0	27
313	Copperâ€Catalyzed Amine–Alkyne–Alkyne Addition Reaction: An Efficient Method For the Synthesis of γ,Î'â€Alkynylâ€Î²â€amino Acid Derivatives. Chemistry - A European Journal, 2009, 15, 11668-11674.	3 . 3	27
314	Self-catalytic, solvent-free or in/on water protocol: aza-Friedel–Crafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols. Tetrahedron, 2010, 66, 1045-1050.	1.9	27
315	Catalytic N-modification of \hat{l}_{\pm} -amino acids and small peptides with phenol under bio-compatible conditions. Communications Chemistry, 2018, 1, .	4.5	27
316	Highly Efficient Palladium-Catalyzed Coupling of Acetylene Gas with Aryl Iodides in Aqueous Medium. Organic Process Research and Development, 1997, 1, 325-327.	2.7	26
317	Diastereoselective synthesis of multisubstituted thiacyclohexanes via cation–olefin cyclizations. Tetrahedron Letters, 2000, 41, 1321-1325.	1.4	26
318	Rhodium-Catalyzed Conjugated Addition of Aryllead Reagents to \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carbonyl Compounds in Air and Water. Synlett, 2001, 2001, 1470-1472.	1.8	26
319	Direct Synthesis of Diphenylamines from Phenols and Ammonium Formate Catalyzed by Palladium. ChemSusChem, 2019, 12, 2999-3002.	6.8	26
320	Photoinduced catalyst-free deborylation–deuteration of arylboronic acids with D ₂ O. Green Chemistry, 2020, 22, 6323-6327.	9.0	26
321	Synthesis of a new chiral amino phosphine ligand and its application in the asymmetric allylic alkylation (AAA) reaction. Tetrahedron: Asymmetry, 2007, 18, 1043-1047.	1.8	25
322	Reaction of alkenecarboxylic acids with isocyanates via rhodium(iii)-catalyzed Câ€"H activation: a versatile route to cyclic imides. Organic Chemistry Frontiers, 2016, 3, 971-974.	4. 5	25
323	Rhodium-catalysed tandem dehydrogenative coupling–Michael addition: direct synthesis of phthalides from benzoic acids and alkenes. RSC Advances, 2016, 6, 40626-40630.	3.6	25
324	Nitrogen Photofixation over Illâ€Nitride Nanowires Assisted by Ruthenium Clusters of Low Atomicity. Angewandte Chemie, 2017, 129, 8827-8831.	2.0	25

#	Article	IF	Citations
325	Umpolung Addition of Aldehydes to Aryl Imines. Angewandte Chemie, 2017, 129, 6356-6359.	2.0	25
326	Palladium-catalyzed hydroalkylation of methylenecyclopropanes with simple hydrazones. Chemical Science, 2020, 11, 10759-10763.	7.4	25
327	Synthesis of a new type of chiral N,P- and N,O-ligands. Tetrahedron Letters, 2008, 49, 668-671.	1.4	24
328	Peroxide-mediated efficient addition of cycloalkanes to imines. Tetrahedron Letters, 2008, 49, 5601-5604.	1.4	24
329	Palladiumâ€Catalyzed Direct βâ€Câ^'H Arylation of Ketones with Arylboronic Acids in Water. Advanced Synthesis and Catalysis, 2017, 359, 2402-2406.	4.3	24
330	Synergistic Relay Reactions To Achieve Redoxâ€Neutral αâ€Alkylations of Olefinic Alcohols with Ruthenium(II) Catalysis. Angewandte Chemie - International Edition, 2020, 59, 4544-4549.	13.8	24
331	Enantiomeric discrimination of chiral amines with new fluorescent chemosensors. Chemical Communications, 1998, , 1747-1748.	4.1	23
332	The effects of aromatic and aliphatic anionic surfactants on Sc(OTf)3-catalyzed Mukaiyama aldol reaction in water. Tetrahedron Letters, 2001, 42, 1803-1805.	1.4	23
333	Water-promoted direct aerobic oxidation of enol silyl ether to \hat{l}_{\pm} -hydroxyl ketones without catalyst. Green Chemistry, 2005, 7, 61-63.	9.0	23
334	Highly Efficient Three-Component Synthesis of \hat{l}^2 -Lactams from N-methylhydroxylamine, Aldehydes, and Phenylacetylene. Chemistry - an Asian Journal, 2006, 1, 203-209.	3.3	23
335	Gold-catalyzed efficient regioselective addition of arenes to allenes. Canadian Journal of Chemistry, 2008, 86, 616-620.	1.1	23
336	Carbonyls as Latent Alkyl Carbanions for Conjugate Additions. Angewandte Chemie, 2017, 129, 6399-6403.	2.0	23
337	Palladium atalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes. Chemistry - A European Journal, 2017, 23, 793-797.	3.3	23
338	Magnesium in water: simple and effective for pinacol-coupling. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3131-3132.	0.9	22
339	Indium-Trichloride Mediated Synthesis of 4,4-Dichlorotetrahydropyrans. Synlett, 1999, 1999, 717-718.	1.8	22
340	A silver-catalyzed transfer hydrogenation of aldehyde in air and water. Organic Chemistry Frontiers, 2014, 1, 161.	4.5	22
341	Palladium-catalyzed aerobic synthesis of <i>ortho</i> primary alcohols. Chemical Communications, 2020, 56, 1239-1242.	4.1	22
342	Switching the <i>Z</i> / <i>E</i> Selectivity in the Palladium(II)-Catalyzed Decarboxylative Heck Arylations of <i>trans</i> -Cinnamaldehydes by Solvent. Organic Letters, 2014, 16, 6282-6285.	4.6	21

#	Article	IF	CITATIONS
343	Combined A ³ Coupling and Click Chemistry Approach for the Synthesis of Dendrimer-Based Biological Tools. ACS Macro Letters, 2014, 3, 1079-1083.	4.8	21
344	Transition-Metal-Catalyzed Direct Addition of Aryl C-H Bonds to Unsaturated Electrophiles. Chemical Record, 2016, 16, 1178-1190.	5.8	21
345	Umpolung cross-coupling of polyfluoroarenes with hydrazones <i>via</i> activation of C–F bonds. Chemical Communications, 2019, 55, 9323-9326.	4.1	21
346	Nickel-Catalyzed Cross-Coupling of Umpolung Carbonyls and Alkyl Halides. Journal of Organic Chemistry, 2019, 84, 6312-6322.	3.2	21
347	Photocatalytic Methylation of Nonactivated sp ³ and sp ² C–H Bonds Using Methanol on GaN. ACS Catalysis, 2020, 10, 6248-6253.	11.2	21
348	Cross-dehydrogenative coupling of unactivated alkanes. Trends in Chemistry, 2022, 4, 479-494.	8.5	21
349	Synthesis of a bis-(binaphthol). Tetrahedron Letters, 1996, 37, 4459-4462.	1.4	20
350	The First Cobalt-Catalyzed Transformation of Alkynyl C-H Bond: Aldehyde-Alkyne-Amine ($A\hat{A}^3$) Coupling. Synlett, 2010, 2010, 475-479.	1.8	20
351	Synthesis of Oxazolidinones, Dioxazolidinone and Polyoxazolidinone (A New Polyurethane) Via A Multi Component-Coupling of Aldehyde, Diamine Dihydrochloride, Terminal Alkyne and CO2. Letters in Organic Chemistry, 2012, 9, 585-593.	0.5	20
352	C–C Bond Formation by Oxidative Ringâ€Opening Homocoupling of Cyclobutanols. European Journal of Organic Chemistry, 2017, 2017, 1070-1073.	2.4	20
353	Light-Driven Metal-Free Direct Deoxygenation of Alcohols under Mild Conditions. IScience, 2020, 23, 101419.	4.1	20
354	Direct deoxygenative borylation of carboxylic acids. Nature Communications, 2021, 12, 4970.	12.8	20
355	Rhodium-catalyzed reactions of arylbismuth and aryllead reagents with a chiral glyoxylate hydrate in air and water: water-promoted diastereoselectivity enhancement. Tetrahedron Letters, 2002, 43, 7789-7791.	1.4	19
356	A novel palladium-catalyzed coupling of epoxides with allyl bromide mediated by indium(i) chloride: a cascade epoxide rearrangementâ€"carbonyl allylation. Chemical Communications, 2003, , 2318-2319.	4.1	19
357	Synthesis of Propargylamines by a Copper-Catalyzed Tandem Anti-Markovnikov Hydroamination and Alkyne Addition. Synlett, 2009, 2009, 937-940.	1.8	19
358	Copper-Catalyzed Radical Reductive Arylation of Styrenes with Aryl Iodides Mediated by Zinc in Water. Journal of Organic Chemistry, 2018, 83, 7416-7422.	3.2	19
359	Metal-Free Construction of the C(sp ³)–CF ₃ Bond: Trifluoromethylation of Hydrazones with Togni's Reagent under Mild Conditions. Organic Letters, 2019, 21, 5948-5951.	4.6	19
360	Model studies of (+)-bergenin: A convenient formation of aryl \hat{l} -lactones. Tetrahedron Letters, 1998, 39, 6837-6840.	1.4	18

#	Article	IF	CITATIONS
361	Synthesis of \hat{l} ±-amino \hat{l} 3-lactone via a novel tandem three-component reaction of alkenes, glyoxylates and amines. Tetrahedron Letters, 2000, 41, 9747-9751.	1.4	18
362	Indium-mediated nucleophilic substitution reaction of \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}_\pm -methoxypiperidine derivative in water. Tetrahedron Letters, 2003, 44, 5519-5522.	1.4	18
363	Copper(II) Triflateâ€Catalyzed Threeâ€Component Coupling of Aldehydes, Alkynes and Carbamates. Advanced Synthesis and Catalysis, 2010, 352, 2437-2440.	4.3	18
364	C(sp3)â^C(sp3) bond formation via nickel-catalyzed deoxygenative homo-coupling of aldehydes/ketones mediated by hydrazine. Nature Communications, 2021, 12, 3729.	12.8	18
365	On Inventing <scp>Crossâ€Dehydrogenative</scp> Coupling (<scp>CDC</scp>): Forming C—C Bond from Two Different C—H Bonds. Chinese Journal of Chemistry, 2022, 40, 838-845.	4.9	18
366	Visibleâ€Lightâ€Triggered Direct Benzoyloxylation of Electronâ€Rich Arenes at Room Temperature without Chelation Assistance. European Journal of Organic Chemistry, 2012, 2012, 6503-6507.	2.4	17
367	Copper(ii)-catalyzed highly regio- and stereo-selective hydrosilylation of unactivated internal alkynes with silylborate in water. Organic and Biomolecular Chemistry, 2015, 13, 5871-5874.	2.8	17
368	Modern methods for the synthesis of perfluoroalkylated aromatics. Organic and Biomolecular Chemistry, 2021, 19, 7116-7128.	2.8	17
369	Ruthenium catalyzed \hat{I}^2 -selective alkylation of vinylpyridines with aldehydes/ketones via N2H4 mediated deoxygenative couplings. Chemical Science, 2021, 12, 2870-2875.	7.4	17
370	Two-in-one metallaphotoredox cross-couplings enabled by a photoactive ligand. CheM, 2022, 8, 2419-2431.	11.7	17
371	Synthesis and Study of A Molecular Fluorescent Chemosensor For Potassium. European Journal of Organic Chemistry, 2000, 2000, 387-389.	2.4	16
372	Ligand Modified CuFe2O4 Nanoparticles as Magnetically Recoverable and Reusable Catalyst for Azide-Alkyne Click Condensation. Heterocycles, 2012, 86, 1023.	0.7	16
373	Dehydrative condensation of carbonyls with non-acidic methylenes enabled by light: synthesis of benzofurans. Chemical Communications, 2016, 52, 13120-13123.	4.1	16
374	Efficient Nitrogen Fixation Catalyzed by Gallium Nitride Nanowire Using Nitrogen and Water. IScience, 2019, 17, 208-216.	4.1	16
375	Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. Organic Letters, 2020, 22, 8808-8813.	4.6	16
376	Aldehyde as a Traceless Directing Group for Regioselective C–H Alkylation Catalyzed by Rhodium(III) in Air. Organic Letters, 2020, 22, 1259-1264.	4.6	16
377	Fluorous tagging: an enabling isolation technique for indium-mediated allylation reactions in water. Organic and Biomolecular Chemistry, 2007, 5, 3589.	2.8	15
378	Umpolung of Carbonyl Groups as Alkyl Organometallic Reagent Surrogates for Palladium atalyzed Allylic Alkylation. Angewandte Chemie, 2018, 130, 16758-16762.	2.0	15

#	Article	IF	Citations
379	Dearomatization–Rearomatization Strategy for Synthesizing Carbazoles with 2,2′-Biphenols and Ammonia by Dual C(Ar)–OH Bond Cleavages. Journal of Agricultural and Food Chemistry, 2020, 68, 13200-13205.	5.2	15
380	Cleavageâ̂•cross-coupling strategy for converting β-O-4 linkage lignin model compounds into high valued benzyl amines via dual C–O bond cleavage. Chinese Chemical Letters, 2022, 33, 1519-1523.	9.0	15
381	Visible-light-induced cross-coupling of aryl iodides with hydrazones <i>via</i> an EDA-complex. Chemical Science, 2022, 13, 7165-7171.	7.4	15
382	Quasi-nature catalysis. Rhodium-catalyzed CÂC bond formation in air and water. Pure and Applied Chemistry, 2001, 73, 1315-1318.	1.9	14
383	Synthesis of Chiral 1,3-Disubstituted Tetrahydroisoquinolines and Their Use in the Asymmetric Addition of Diethylzinc to Aldehydes. Heterocycles, 2010, 80, 1319.	0.7	14
384	Ruthenium-Catalyzed Aldehyde Functionality Reshuffle: Selective Synthesis of <i> E < /i > -2-Arylcinnamaldehydes from <i> E - < /i > \hat{l}^2-Bromostyrenes and Aryl Aldehydes. Journal of the American Chemical Society, 2012, 134, 16468-16471.</i></i>	13.7	14
385	Exploration of new reaction tools for late-stage functionalization of complex chemicals. Canadian Journal of Chemistry, 2019, 97, 67-85.	1.1	14
386	Empowering alcohols as carbonyl surrogates for Grignard-type reactions. Nature Communications, 2020, 11, 6022.	12.8	14
387	Mono-Alkylation of Diols Through Ruthenium-Catalyzed Reaction with Homoallyl Alcohols. Synthetic Communications, 1998, 28, 507-515.	2.1	13
388	Magnetically Recoverable Iron Nanoparticle Catalyzed Cross-DehydrogenaÂtive Coupling (CDC) between Two Csp³-H Bonds Using Molecular Oxygen. Synlett, 2010, 2010, 2002-2008.	1.8	13
389	Unorthodox chemistry for an unorthodox challenge: Exploration of new chemical reactivities for a sustainable future. Science China Chemistry, 2011, 54, 1815-1830.	8.2	13
390	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. Tetrahedron, 2014, 70, 6162-6168.	1.9	13
391	Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes. APL Materials, 2015, 3, 116106.	5.1	13
392	Pd-Catalyzed Homo Cross-Dehydrogenative Coupling of 2-Arylpyridines by Using I2 as the Sole Oxidant. Synthesis, 2016, 48, 1616-1621.	2.3	13
393	Metalâ€Free Photoinduced Transformation of Aryl Halides and Diketones into Aryl Ketones. European Journal of Organic Chemistry, 2019, 2019, 2721-2724.	2.4	13
394	Catalytic hydrogenation of CO ₂ from air <i>via</i> porous silica-supported Au nanoparticles in aqueous solution. Green Chemistry, 2021, 23, 3740-3749.	9.0	13
395	Photoinduced transition-metal and external photosensitizer free cross-coupling of aryl triflates with trialkyl phosphites. Chemical Communications, 2021, 57, 8429-8432.	4.1	13
396	Light-driven MPV-type reduction of aryl ketones/aldehydes to alcohols with isopropanol under mild conditions. Green Chemistry, 2021, 23, 7539-7543.	9.0	13

#	Article	IF	Citations
397	In aqua synthesis of a high molecular weight arylethynylene polymer with reversible hydrogel properties. Chemical Communications, 1998, , 1351-1352.	4.1	12
398	Iridium as a general catalyst for the decarbonylative addition of aldehydes to alkynes. Journal of Organometallic Chemistry, 2011, 696, 211-215.	1.8	12
399	Highly Efficient Reduction of Aldehydes with Silanes in Water Catalyzed by Silver. Synlett, 2013, 24, 2049-2056.	1.8	12
400	Direct conjugate additions using aryl and alkyl organic halides in air and water. Organic Chemistry Frontiers, 2018, 5, 3579-3584.	4.5	12
401	Mechanistic insights of methane conversion to ethylene over gallium oxide and gallium nitride using density functional theory. Molecular Catalysis, 2020, 482, 110606.	2.0	12
402	Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angewandte Chemie, 2022, 134, e202112770.	2.0	12
403	Silver-Catalyzed Direct Addition of Terminal Alkynes to Simple Cyclic Ketones in Water. Synlett, 2012, 23, 2758-2762.	1.8	11
404	Non-symmetrical diarylcarboxylic acids via rhodium(<scp>i</scp>)-catalyzed regiospecific cross-dehydrogenation coupling of aromatic acids: twofold direct Câ€"H bond activations in water. RSC Advances, 2016, 6, 91617-91620.	3.6	11
405	Addition reactions of organic carbanion equivalents via hydrazones in water. Tetrahedron, 2021, 80, 131889.	1.9	11
406	Photoinduced transition-metal and external photosensitizer free phosphonation of unactivated $C(sp2)$ â \in "F bond via SET process under mild conditions. Fundamental Research, 2021, 1, 742-746.	3.3	11
407	Aldehyde allylation. Green Chemistry, 1999, 1, 265-268.	9.0	10
408	Lowâ€Valent Indium as a Catalyst for the Allylation of Ketones and <i>N</i> â€Acylhydrazones. ChemSusChem, 2009, 2, 205-206.	6.8	10
409	Water-Promoted, Silver–Phosphine Complex–Catalyzed Stereoselective Cyclization of 2-(1-Hydroxy-3-arylprop-2-ynyl)phenols Leading to a Highly Efficient Approach to Aurones. Synthetic Communications, 2011, 41, 3228-3236.	2.1	10
410	Development of an indicator for the direct visualization of radical intermediates in organic reactions. Chemical Communications, 2017, 53, 11225-11228.	4.1	10
411	Silver(I)â€Catalyzed Widely Applicable Aerobic 1,2â€Diol Oxidative Cleavage. Angewandte Chemie, 2018, 130, 2646-2650.	2.0	10
412	Direct synthesis of indenes <i>via</i> a rhodium-catalyzed multicomponent C _{sp2} â€"H annulation reaction. Organic and Biomolecular Chemistry, 2018, 16, 8042-8047.	2.8	10
413	Direct formation of 2,4-disubstituted tetrahydropyranols in water mediated by an acidic solid resin. Green Chemistry, 2003, 5, 80-81.	9.0	9
414	Photon can tremendously accelerate the alkyl iodides' elimination in water. Tetrahedron Letters, 2015, 56, 1699-1702.	1.4	9

#	Article	IF	Citations
415	Metalâ€Free and Redoxâ€Neutral Conversion of Organotrifluoroborates into Radicals Enabled by Visible Light. Angewandte Chemie, 2018, 130, 13687-13691.	2.0	9
416	Group-III Nitrides Catalyzed Transformations of Organic Molecules. CheM, 2021, 7, 64-92.	11.7	9
417	Catalyst-free generation of acyl radicals induced by visible light in water to construct C–N bonds. Organic and Biomolecular Chemistry, 2021, 19, 1970-1975.	2.8	9
418	Visible-light-induced transition metal and photosensitizer free decarbonylative addition of amino-arylaldehydes to ketones. Chemical Science, 2022, 13, 698-703.	7.4	9
419	Umpolung carbonyls enable direct allylation and olefination of carbohydrates. Science Advances, 2022, 8, eabm6840.	10.3	9
420	Light-driven transition-metal-free direct decarbonylation of unstrained diaryl ketones via a dual C–C bond cleavage. Nature Communications, 2022, 13, 1805.	12.8	9
421	Visible-light induced transition-metal and photosensitizer-free conversion of aldehydes to acyl fluorides under mild conditions. Green Synthesis and Catalysis, 2022, 3, 373-376.	6.8	9
422	Revised Mechanism for a Ruthenium-Catalyzed Coupling of Aldehyde and Terminal Alkyne. ACS Omega, 2018, 3, 3218-3227.	3.5	8
423	Eight-Membered Thiocycloether via Indium-Mediated Ring Enlargement. Synlett, 1999, 1999, 735-736.	1.8	7
424	Efficient Synthesis of Dihydrobenzofurans via a Multicomponent Coupling of Salicylaldehydes, Amines, and Alkynes. Synlett, 2008, 2008, 1897-1901.	1.8	7
425	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. Tetrahedron, 2014, 70, 8952-8958.	1.9	7
426	Palladium-catalyzed 1,4-addition of terminal alkynes to acrolein. Tetrahedron, 2015, 71, 5866-5870.	1.9	7
427	Rhodium-catalyzed regiospecific C–H ortho-phenylation of benzoic acids with Cu/air as an oxidant. Organic Chemistry Frontiers, 2017, 4, 417-420.	4.5	7
428	Palladiumâ€Catalyzed Defluorinative Alkylation of <i>gem</i> å€Difluorocyclopropanes: Switching Regioselectivity via Simple Hydrazones. Angewandte Chemie, 2021, 133, 13208-13214.	2.0	7
429	Organic Reactions in Water and Other Alternative Media: Metal-Mediated Carbon-Carbon Bond Formations. ACS Symposium Series, 2002, , 178-190.	0.5	6
430	Aromatic Chemistry in the Excited State: Facilitating Metalâ€Free Substitutions and Cross ouplings. Angewandte Chemie, 2020, 132, 1802-1812.	2.0	6
431	Carbon–carbon bond formation and green chemistry: one dream and 30 years hence. Canadian Journal of Chemistry, 2022, 100, 98-103.	1.1	6
432	Copper-Catalyzed Conjugate Addition of Carbonyls as Carbanion Equivalent via Hydrazones. Journal of Organic Chemistry, 2021, 86, 13111-13117.	3.2	6

#	Article	IF	CITATIONS
433	A One-Pot, Rhodium-Catalyzed Hydrostannylation-Conjugate Addition in Air and Water. Letters in Organic Chemistry, 2004, 1, 122-124.	0.5	5
434	Efficient Direct Alkynylation of Trifluoromethyl Ketones Catalyzed by AgF in Water and Organic Solvents. Synlett, 2008, 2008, 1571-1573.	1.8	5
435	Palladium-catalysed atom-economical synthesis of conjugated dienals from terminal acetylenes and acrolein. Chemical Communications, 2017, 53, 6136-6139.	4.1	5
436	Study of Rhodamineâ€Based Fluorescent Probes for Organic Radical Intermediates. European Journal of Organic Chemistry, 2021, 2021, 4059-4064.	2.4	5
437	Ruthenium(<scp>ii</scp>)-catalyzed regioselective 1,6-conjugate addition of umpolung aldehydes as carbanion equivalents. Chemical Science, 2021, 13, 118-122.	7.4	5
438	A Oneâ€Pot Approach for Bioâ€Based Arylamines via a Combined Photooxidative Dearomatizationâ€Rearomatization Strategy. Chemistry - A European Journal, 2022, 28, .	3.3	5
439	Catalytic Grignard-Type Addition of Aryl Câ€H Bonds to C=O and C=N Bonds. , 2016, , 3-15.		4
440	C–C Oxidative Cleavage in the Aerobic Esterification of Alcohol. CheM, 2020, 6, 3163-3165.	11.7	4
441	Carbonâ^'Carbon Bond Formation via Palladium-Catalyzed Reductive Coupling in Air. Organic Letters, 1999, 1, 1687-1687.	4.6	3
442	Rhodium-catalyzed arylation of α-amido sulfones with arylboronic acids in a water–toluene biphasic system. Inorganica Chimica Acta, 2011, 369, 284-287.	2.4	3
443	Dearomatization–Rearomatization Strategy for Palladium-Catalyzed C–N Cross-Coupling Reactions. Synlett, 0, 32, .	1.8	3
444	Base-Promoted Catalyst-Free Regioselective Hydroacylation of Styrenes with Hydrazones via Carbanion Addition. CCS Chemistry, 2022, 4, 3254-3263.	7.8	3
445	IN <i>AQUA</i> SYNTHESIS OF A HIGH MOLECULAR WEIGHT ARYLETHYNYLENE POLYMER EXHIBITING REVERSIBLE HYDROGEL PROPERTIES. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999, 36, 971-980.	2.2	2
446	SYNTHESIS OF ALLENE ARYL \hat{l} -LACTONES VIA INDIUM-MEDIATED [4+2] CYCLIZATION IN WATER. Main Group Metal Chemistry, 1999, 22, .	1.6	2
447	The Greening of a Fundamental Reaction: Metal-Mediated Reactions in Water. ACS Symposium Series, 2000, , 74-86.	0.5	2
448	Water as Solvent for Organic and Material Synthesis. ACS Symposium Series, 2000, , 62-73.	0.5	2
449	Catalytic Nucleophilic Additions of Alkynes in Water. , 2013, , 87-108.		2
450	GOLD-CATALYZED MULTI-COMPONENT REACTIONS. Catalytic Science Series, 2014, , 225-251.	0.0	2

#	Article	IF	CITATIONS
451	A Cu/Cinchona P,N-ligand system enabled general asymmetric C(sp3)-C(sp) coupling. Science China Chemistry, 2020, 63, 751-752.	8.2	2
452	Conversion of Lignin into High Value Chemical Products. , 2019, , 385-403.		2
453	Synthesis of \hat{l} ±-(perfluoroalkylsulfonyl)propiophenones: a new set of reagents for the light-mediated perfluoroalkylation of aromatics. Beilstein Journal of Organic Chemistry, 0, 18, 788-795.	2.2	2
454	Synthesis of (Z)-3-dodecenolide, the main aggregation pheromone from the flat grain beetle, Cryptolestes Pusillus Schönerr. Chinese Journal of Chemistry, 1989, 7, 407-411.	0.0	1
455	Editorial: Special Collection of Silver Catalysis in Organic Synthesis. ChemCatChem, 2021, 13, 3200-3201.	3.7	1
456	Catalytic Reactions of Industrial Importance in Aqueous Media. , 2005, , 591-608.		1
457	Demetallation of organometallic and metal-mediated reactions. Innovation(China), 2022, 3, 100262.	9.1	1
458	Rhodium-Catalyzed Reactions of Arylbismuth and Aryllead Reagents with a Chiral Glyoxylate Hydrate in Air and Water: Water-Promoted Diastereoselectivity Enhancement ChemInform, 2003, 34, no-no.	0.0	0
459	Developing Metal-Mediated and -Catalyzed Reactions in Air and Water. ChemInform, 2003, 34, no.	0.0	0
460	InCl3-Catalyzed Reaction of Aromatic Amines with Cyclic Hemiacetals in Water: Facile Synthesis of 1,2,3,4-Tetrahydroquinoline Derivatives ChemInform, 2003, 34, no.	0.0	0
461	Novel Chiral Gallium Lewis Acid Catalysts with Semi-Crown Ligands for Aqueous Asymmetric Mukaiyama Aldol Reactions ChemInform, 2003, 34, no.	0.0	0
462	Ruthenium-Catalyzed Tandem Olefin Migration/Aldol and Mannich-Type Reactions in Water and Protic Solvents ChemInform, 2003, 34, no.	0.0	0
463	Aldol- and Mannich-Type Reactions via in situ Olefin Migration in Ionic Liquid ChemInform, 2003, 34, no.	0.0	0
464	The Barbier—Grignard-Type Carbonyl Alkylation Using Unactivated Alkyl Halides in Water ChemInform, 2003, 34, no.	0.0	0
465	Indium-Mediated Nucleophilic Substitution Reaction of \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l} ±-Methoxypiperidine Derivative in Water ChemInform, 2003, 34, no.	0.0	0
466	A Highly Regio- and Stereoselective Transition Metal-Catalyzed Hydrosilylation of Terminal Alkynes under Ambient Conditions of Air, Water, and Room Temperature ChemInform, 2003, 34, no.	0.0	0
467	A Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amines via C—H Activation Catalyzed by Gold in Water ChemInform, 2003, 34, no.	0.0	0
468	Suzuki Reaction Takes a "Naked Hot Bath― Coupling in High-Temperature Water Without Transition Metals. ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	Citations
469	A Novel Palladium-Catalyzed Coupling of Epoxides with Allyl Bromide Mediated by Indium(I) Chloride: A Cascade Epoxide Rearrangement—Carbonyl Allylation ChemInform, 2004, 35, no.	0.0	0
470	The First Silver-Catalyzed Three-Component Coupling of Aldehyde, Alkyne, and Amine ChemInform, 2004, 35, no.	0.0	0
471	Novel 1,3-Dipolar Cycloaddition of Diazocarbonyl Compounds to Alkynes Catalyzed by InCl3 in Water ChemInform, 2004, 35, no.	0.0	0
472	Three-Component Coupling of Aldehyde, Alkyne, and Amine Catalyzed by Silver in Ionic Liquid Chemlnform, 2004, 35, no.	0.0	0
473	Facile and Selective Copperâ€"Palladium Catalyzed Addition of Terminal Alkynes to Activated Alkynes in Water ChemInform, 2004, 35, no.	0.0	0
474	Highly Efficient Addition of Activated Methylene Compounds to Alkenes Catalyzed by Gold and Silver Chemlnform, 2004, 35, no.	0.0	0
475	A Remarkably Efficient Coupling of Acid Chlorides with Alkynes in Water ChemInform, 2004, 35, no.	0.0	0
476	Microwave-Assisted Direct Addition of Cycloethers to Alkynes ChemInform, 2005, 36, no.	0.0	0
477	A Highly Efficient Gold/Silver-Catalyzed Addition of Arenes to Imines ChemInform, 2005, 36, no.	0.0	0
478	CuBr-Catalyzed Efficient Alkynylation of sp3 C?H Bonds Adjacent to a Nitrogen Atom ChemInform, 2005, 36, no.	0.0	0
479	The First Palladium-Catalyzed 1,4-Addition of Terminal Alkynes to Conjugated Enones ChemInform, 2005, 36, no.	0.0	0
480	Catalytic Enantioselective Alkynylation of Prochiral sp3 C?H Bonds Adjacent to a Nitrogen Atom ChemInform, 2005, 36, no.	0.0	0
481	Gold- and Silver-Catalyzed Highly Regioselective Addition of Active Methylenes to Dienes, Triene, and Cyclic Enol Ethers Chemlnform, 2005, 36, no.	0.0	0
482	Highly Efficient Copper-Catalyzed Nitro-Mannich Type Reaction: Cross Dehydrogenative-Coupling Between sp3 C—H Bond and sp3 C—H Bond ChemInform, 2005, 36, no.	0.0	0
483	CuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines via Cross-Dehydrogenative Coupling Between sp3 C—H and sp2 C—H Bonds ChemInform, 2005, 36, no.	0.0	0
484	A Silver-Catalyzed Domino Route Toward 1,2-Dihydroquinoline Derivatives from Simple Anilines and Alkynes ChemInform, 2005, 36, no.	0.0	0
485	Organic Reactions in Aqueous Media with a Focus on Carbon—Carbon Bond Formations: A Decade Update. ChemInform, 2005, 36, no.	0.0	0
486	Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) Between Tetrahydroisoquinolines and Activated Methylene Compounds ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
487	Highly Efficient, Reversible Addition of Activated Methylene Compounds to Styrene Derivatives Catalyzed by Silver Catalysts ChemInform, 2005, 36, no.	0.0	O
488	Phosphine-Triggered Complete Chemo-Switch: From Efficient Aldehyde—Alkyne—Amine Coupling to Efficient Aldehyde—Alkyne Coupling in Water ChemInform, 2006, 37, no.	0.0	0
489	An Annulation Toward Fused Bicyclolactones ChemInform, 2006, 37, .	0.0	0
490	Asymmetric Synthesis Based on Catalytic Activation of CH Bonds and CC Bonds., 0,, 129-152.		0
491	Carbonâ€"Carbon Bond Formation via Palladiumâ€Catalyzed Reductive Coupling of Aryl Halides in Air and Water ChemInform, 2002, 33, 108-108.	0.0	O
492	CuBrâ€Mediated Coupling of Alkynes with Nâ€Acylimine and Nâ€Acyliminium Ions in Water ChemInform, 2002, 33, 70-70.	0.0	0
493	Addendum: Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds. Nature Chemistry, 2017, 9, 723-723.	13.6	0
494	Conversion of Lignin into High Value Chemical Products. , 2018, , 1-20.		0