
Kenneth M Scaglione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4243394/publications.pdf Version: 2024-02-01

KENNETH M SCACHONE

#	Article	IF	CITATIONS
1	Viral vector gene delivery of the novel chaperone protein SRCP1 to modify insoluble protein in in vitro and in vivo models of ALS. Gene Therapy, 2023, 30, 528-533.	4.5	5
2	Chemical Regulation of the Protein Quality Control E3 Ubiquitin Ligase Câ€Terminus of Hsc70 Interacting Protein (CHIP). ChemBioChem, 2022, , .	2.6	1
3	The molecular basis of spinocerebellar ataxia type 48 caused by a de novo mutation in the ubiquitin ligase CHIP. Journal of Biological Chemistry, 2022, 298, 101899.	3.4	2
4	Development of a Positive Selection High Throughput Genetic Screen in Dictyostelium discoideum. Frontiers in Cell and Developmental Biology, 2021, 9, 725678.	3.7	3
5	Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 759532.	3.7	8
6	Assessing the necessity of a family of genes that encode small proteins in development. MicroPublication Biology, 2021, 2021, .	0.1	0
7	UbcH5 Interacts with Substrates to Participate in Lysine Selection with the E3 Ubiquitin Ligase CHIP. Biochemistry, 2020, 59, 2078-2088.	2.5	7
8	Changes in protein function underlie the disease spectrum in patients with CHIP mutations. Journal of Biological Chemistry, 2019, 294, 19236-19245.	3.4	16
9	A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development. MSphere, 2019, 4, .	2.9	1
10	Most mutations that cause spinocerebellar ataxia autosomal recessive type 16 (SCAR16) destabilize the protein quality-control E3 ligase CHIP. Journal of Biological Chemistry, 2018, 293, 2735-2743.	3.4	28
11	The ubiquitin conjugating enzyme Ube2W regulates solubility of the Huntington's disease protein, huntingtin. Neurobiology of Disease, 2018, 109, 127-136.	4.4	19
12	SRCP1 Conveys Resistance to Polyglutamine Aggregation. Molecular Cell, 2018, 71, 216-228.e7.	9.7	15
13	Interaction of the polyglutamine protein ataxin-3 with Rad23 regulates toxicity in Drosophila models of Spinocerebellar Ataxia Type 3. Human Molecular Genetics, 2017, 26, 1419-1431.	2.9	40
14	Loss of the Ubiquitin-conjugating Enzyme UBE2W Results in Susceptibility to Early Postnatal Lethality and Defects in Skin, Immune, and Male Reproductive Systems. Journal of Biological Chemistry, 2016, 291, 3030-3042.	3.4	20
15	USP5 Is Dispensable for Monoubiquitin Maintenance in Drosophila. Journal of Biological Chemistry, 2016, 291, 9161-9172.	3.4	10
16	Allosteric regulation of deubiquitylase activity through ubiquitination. Frontiers in Molecular Biosciences, 2015, 2, 2.	3.5	15
17	A Bipartite Interaction between Hsp70 and CHIP Regulates Ubiquitination of Chaperoned Client Proteins. Structure, 2015, 23, 472-482.	3.3	78
18	The Social Amoeba Dictyostelium discoideum Is Highly Resistant to Polyglutamine Aggregation. Journal of Biological Chemistry, 2015, 290, 25571-25578.	3.4	28

KENNETH M SCAGLIONE

#	Article	IF	CITATIONS
19	Intrinsic disorder drives N-terminal ubiquitination by Ube2w. Nature Chemical Biology, 2015, 11, 83-89.	8.0	68
20	Ubiquitin-binding site 2 of ataxin-3 prevents its proteasomal degradation by interacting with Rad23. Nature Communications, 2014, 5, 4638.	12.8	56
21	The E3 Ubiquitin Ligase CHIP and the Molecular Chaperone Hsc70 Form a Dynamic, Tethered Complex. Biochemistry, 2013, 52, 5354-5364.	2.5	48
22	Enzymatic production of monoâ€ubiquitinated proteins for structural studies: The example of the Josephin domain of ataxinâ€3. FEBS Open Bio, 2013, 3, 453-458.	2.3	6
23	Ubiquitination Regulates the Neuroprotective Function of the Deubiquitinase Ataxin-3 in Vivo. Journal of Biological Chemistry, 2013, 288, 34460-34469.	3.4	48
24	CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. Neuron, 2013, 78, 440-455.	8.1	422
25	The Ubiquitin-conjugating Enzyme (E2) Ube2w Ubiquitinates the N Terminus of Substrates. Journal of Biological Chemistry, 2013, 288, 18784-18788.	3.4	89
26	Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. Journal of Clinical Investigation, 2013, 123, 4158-4169.	8.2	246
27	Ube2w and Ataxin-3 Coordinately Regulate the Ubiquitin Ligase CHIP. Molecular Cell, 2011, 43, 599-612.	9.7	151
28	The loop-less tmCdc34 E2 mutant defective in polyubiquitination in vitro and in vivo supports yeast growth in a manner dependent on Ubp14 and Cka2. Cell Division, 2011, 6, 7.	2.4	10
29	Activity and Cellular Functions of the Deubiquitinating Enzyme and Polyglutamine Disease Protein Ataxin-3 Are Regulated by Ubiquitination at Lysine 117. Journal of Biological Chemistry, 2010, 285, 39303-39313.	3.4	84
30	Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO Journal, 2009, 28, 372-382.	7.8	154
31	The Deubiquitinating Enzyme Ataxin-3, a Polyglutamine Disease Protein, Edits Lys63 Linkages in Mixed Linkage Ubiquitin Chains. Journal of Biological Chemistry, 2008, 283, 26436-26443.	3.4	226
32	SCF E3-Mediated Autoubiquitination Negatively Regulates Activity of Cdc34 E2 but Plays a Nonessential Role in the Catalytic Cycle In Vitro and In Vivo. Molecular and Cellular Biology, 2007, 27, 5860-5870.	2.3	18
33	Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages*. Journal of Biological Chemistry, 2007, 282, 17375-17386.	3.4	371
34	Release of Ubiquitin-Charged Cdc34-Sâ^¼Ub from the RING Domain Is Essential for Ubiquitination of the SCFCdc4-Bound Substrate Sic1. Cell, 2003, 114, 611-622.	28.9	84