Samuel Burer

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/424273/publications.pdf
Version: 2024-02-01

Convex hull representations for bounded products of variables. Journal of Clobal Optimization, 2021,
80,757 .

Quadratic optimization with switching variables: the convex hull for $\$ \$ n=2 \$ \$$. Mathematical Programming, 2021, 188, 421-441.

Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic
programs. Mathematical Programming, 2020, 181, 1-17.

4 Three methods for robust grading. European Journal of Operational Research, 2019, 272, 364-371.
5.71

5 A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1
linear programming. Computational Management Science, 2018, 15, 111-134.
1.3

A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides.
Computational Optimization and Applications, 2018, 70, 33-59.
$7 \quad$ Quadratic programs with hollows. Mathematical Programming, 2018, 170, 541-553.
$2.4 \quad 13$

8 How to convexify the intersection of a second order cone and a nonconvex quadratic. Mathematical
Programming, 2017, 162, 393-429.
2.4

24

Robust sensitivity analysis of the optimal value of linear programming. Optimization Methods and
9 Software, 2017, 32, 1187-1205.

10 A branch-and-bound algorithm for instrumental variable quantile regression. Mathematical
Programming Computation, 2017, 9, 471-497.
11 Nearly-efficient tuitions and subsidies in American public higher education. Economics of Education
Review, 2016, 55, 182-197.

A Two-Variable Approach to the Two-Trust-Region Subproblem. SIAM Journal on Optimization, 2016, 26, 661-680.
2.0

20

A gentle, geometric introduction to copositive optimization. Mathematical Programming, 2015, 151,
89-116.
2.4

39

The trust region subproblem with non-intersecting linear constraints. Mathematical Programming,
2015, 149, 253-264.
2.4

44

Unbounded convex sets for non-convex mixed-integer quadratic programming. Mathematical Programming, 2014, 143, 231-256.

Faster, but weaker, relaxations for quadratically constrained quadratic programs. Computational Optimization and Applications, 2014, 59, 27-45.
1.6

13

17 Separation and relaxation for cones of quadratic forms. Mathematical Programming, 2013, 137, 343-370. 10
Non-convex mixed-integer nonlinear programming: A survey. Surveys in Operations Research anc
Management Science, 2012, 17, 97-106.
21 Newsvendor games: convex optimization of centralized inventory operations. Top, 2012, 20, 707-728. 3

22 Representing quadratically constrained quadratic programs as generalized copositive programs.
Globally solving nonconvex quadratic programming problems via completely positive programming.

4.8

73

24 The MILP Road to MIQCP. The IMA Volumes in Mathematics and Its Applications, 2012, , 373-405.
$0.5 \quad 31$

```
25 A semidefinite programming approach to the hypergraph minimum bisection problem. Optimization,
2011, 60, 413-427.
```

Relaxing the optimality conditions of box QP. Computational Optimization and Applications, 2011, 48,
653-673.
1.6

Computable representations for convex hulls of low-dimensional quadratic forms. Mathematical
$27 \quad \begin{aligned} & \text { Computable representations for } \\ & \text { Programming, 2010, 124, 33-43. }\end{aligned}$
2.4

68

Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Mathematical
Programming Computation, 2010, 2, 1-19.
29 On Nonconvex Quadratic Programming with Box Constraints. SIAM Journal on Optimization, 2009, 20,
1073-1089.
2.0 50
Ap-cone sequential relaxation procedure for 0-1 integer programs. Optimization Methods and 2.4 8 30
Software, 2009, 24, 523-548.2.4273
On the copositive representation of binary and co
Mathematical Programming, 2009, 120, 479-495.Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite1.658branch-and-bound. Computational Optimization and Applications, 2009, 43, 181-195.

The difference between <mml:math xmlns:mml="http:|/www.w3.org/1998/Math/MathML" altimg="si1.gif"
 1539-1552

Solving maximum-entropy sampling problems using factored masks. Mathematical Programming, 2007,
109, 263-281.
37 Solving Lift-and-Project Relaxations of Binary Integer Programs. SIAM Journal on Optimization, 2006,
2.0 76 16, 726-750.

$$
16,726-750 .
$$

$$
10
$$

Computational enhancements in low-rank semidefinite programming. Optimization Methods and Software, 2006, 21, 493-512.
39 Local Minima and Convergence in Low-Rank Semidefinite Programming. Mathematical Programming, $2005,103,427-444$.

40 D.C. Versus Copositive Bounds for Standard QP. Journal of Global Optimization, 2005, 33, 299-312. 20

41	A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming, 2003, 95, 329-357.	2.4	444
42	A computational study of a gradient-based log-barrier algorithm for a class of large-scale SDPs. Mathematical Programming, 2003, 95, 359-379.	2.4	27
43	Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices. SIAM Journal on Optimization, 2003, 14, 139-172.	2.0	31
44	A General Framework for Establishing Polynomial Convergence of Long-Step Methods for Semidefinite Programming. Optimization Methods and Software, 2003, 18, 1-38.	2.4	2
45	Rank-Two Relaxation Heuristics for MAX-CUT and Other Binary Quadratic Programs. SIAM Journal on Optimization, 2002, 12, 503-521.	2.0	147
46	Maximum stable set formulations and heuristics based on continuous optimization. Mathematical Programming, 2002, 94, 137-166.	2.4	44
47	Solving a class of semidefinite programs via nonlinear programming. Mathematical Programming, 2002, 93, 97-122.	2.4	37
48	Interior-Point Algorithms for Semidefinite Programming Based on a Nonlinear Formulation. Computational Optimization and Applications, 2002, 22, 49-79.	1.6	11
49	A projected gradient algorithm for solving the maxcut SDP relaxation. Optimization Methods and Software, 2001, 15, 175-200.	2.4	53

