Zhengwei Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241507/publications.pdf

Version: 2024-02-01

34105 24258 19,047 113 52 110 citations h-index g-index papers 115 115 115 16824 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Red/NIR/SWIR multi-band persistent probe chargeable by general lighting sources for long-term, high-contrast visible/NIR-I/NIR-II multi-window bioimaging. Chemical Engineering Journal, 2022, 446, 137473.	12.7	15
2	Gd ³⁺ -activated narrowband ultraviolet-B persistent luminescence through persistent energy transfer. Dalton Transactions, 2021, 50, 3499-3505.	3.3	29
3	Ultraviolet-C persistent luminescence from the Lu ₂ SiO ₅ :Pr ³⁺ persistent phosphor for solar-blind optical tagging. Dalton Transactions, 2021, 50, 8457-8466.	3.3	26
4	Quintuple-mode dynamic anti-counterfeiting using multi-mode persistent phosphors. Journal of Materials Chemistry C, 2021, 9, 16634-16644.	5 . 5	55
5	Solar-blind ultraviolet-C persistent luminescence phosphors. Nature Communications, 2020, 11, 2040.	12.8	92
6	A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes. Journal of Materials Chemistry C, 2018, 6, 8003-8010.	5 . 5	46
7	Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence. Journal of Materials Chemistry C, 2017, 5, 6488-6492.	5 . 5	50
8	Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr ³⁺ -doped persistent phosphors. Dalton Transactions, 2017, 46, 11149-11153.	3.3	47
9	Divalent Nickelâ€Activated Gallateâ€Based Persistent Phosphors in the Shortâ€Wave Infrared. Advanced Optical Materials, 2016, 4, 562-566.	7.3	78
10	New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared. Light: Science and Applications, 2016, 5, e16124-e16124.	16.6	185
11	Ultra-sensitive in-situ detection of near-infrared persistent luminescent tracer nanoagents in crude oil-water mixtures. Scientific Reports, 2016, 6, 27993.	3.3	27
12	Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition. Carbon, 2016, 101, 57-61.	10.3	44
13	Long persistent luminescence in the ultraviolet in Pb ²⁺ -doped Sr ₂ MgGe ₂ O ₇ persistent phosphor. Dalton Transactions, 2016, 45, 1322-1326.	3.3	56
14	Phonon-assisted upconversion charging in Zn_3Ga_2GeO_8:Cr^3+ near-infrared persistent phosphor. Optics Letters, 2016, 41, 954.	3.3	45
15	Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons. Journal of Materials Chemistry C, 2015, 3, 778-788.	5.5	7
16	Nanoscintillator-Mediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment. Nano Letters, 2015, 15, 2249-2256.	9.1	312
17	Photostimulable Near-Infrared Persistent Luminescent Nanoprobes for Ultrasensitive and Longitudinal Deep-Tissue Bio-Imaging. Theranostics, 2014, 4, 1112-1122.	10.0	104
18	Approaching Carbon Nanotube Reinforcing Limit in B ₄ <scp>C</scp> Matrix Composites Produced by Chemical Vapor Infiltration. Advanced Engineering Materials, 2014, 16, 161-166.	3.5	16

#	Article	IF	Citations
19	X-ray micromodulated luminescence tomography in dual-cone geometry. Journal of Biomedical Optics, 2014, 19, 076002.	2.6	22
20	Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors. Nanoscale, 2014, 6, 2073.	5.6	70
21	Detection of Up-converted Persistent Luminescence in the Near Infrared Emitted by the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi> Zn < /mml:mi > </mml:mi></mml:mrow> <mml:mrow> <mml:mrow< td=""><td>l:mñ>3<td>nml:mn></td></td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	l:mñ>3 <td>nml:mn></td>	nml:mn>
22	F, Ca co-doped TiO ₂ nanocrystals with enhanced photocatalytic activity. Dalton Transactions, 2014, 43, 16160-16163.	3.3	28
23	Tumor Vasculature Targeted Photodynamic Therapy for Enhanced Delivery of Nanoparticles. ACS Nano, 2014, 8, 6004-6013.	14.6	218
24	New localized/delocalized emitting state of Eu2+ in orange-emitting hexagonal EuAl2O4. Scientific Reports, 2014, 4, 7101.	3.3	15
25	Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology. Scientific Reports, 2014, 4, 6117.	3.3	19
26	New Ternary Europium Aluminate Luminescent Nanoribbons for Advanced Photonics. Advanced Functional Materials, 2013, 23, 1998-2006.	14.9	13
27	Luminescent GeO2–Zn2GeO4 hybrid one dimensional nanostructures. CrystEngComm, 2013, 15, 2904.	2.6	18
28	Luminescent Zn2GeO4 nanorod arrays and nanowires. Physical Chemistry Chemical Physics, 2013, 15, 7488.	2.8	24
29	Nanostructured Zeolitic Imidazolate Frameworks Derived from Nanosized Zinc Oxide Precursors. Crystal Growth and Design, 2013, 13, 1002-1005.	3.0	49
30	Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Scientific Reports, 2013, 3, 1554.	3.3	388
31	Self-Assembly of Graphene on Carbon Nanotube Surfaces. Scientific Reports, 2013, 3, 2353.	3.3	27
32	Label-Free Luminescent Mesoporous Silica Nanoparticles for Imaging and Drug Delivery. Theranostics, 2013, 3, 650-657.	10.0	85
33	Effect of primary particle size on colloidal stability of multiwall carbon nanotubes. Water Science and Technology, 2013, 68, 2249-2256.	2.5	2
34	New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light: Science and Applications, 2013, 2, e50-e50.	16.6	355
35	Luminescent Nanoribbons: New Ternary Europium Aluminate Luminescent Nanoribbons for Advanced Photonics (Adv. Funct. Mater. 16/2013). Advanced Functional Materials, 2013, 23, 1978-1978.	14.9	0
36	Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. Journal of Materials Chemistry, 2012, 22, 6974.	6.7	124

#	Article	IF	CITATIONS
37	Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nature Materials, 2012, 11, 58-63.	27.5	1,109
38	Hydrogen Passivation Induced Dispersion of Multiâ€Walled Carbon Nanotubes. Advanced Materials, 2012, 24, 881-885.	21.0	31
39	Carbon Nanotubes: Hydrogen Passivation Induced Dispersion of Multi-Walled Carbon Nanotubes (Adv.) Tj ETQq1	1 _{21.0} .78431	4 rgBT /Ove
40	Fibrinogen Clot Induced by Gold-Nanoparticle <i>In Vitro</i> . Journal of Nanoscience and Nanotechnology, 2011, 11, 74-81.	0.9	15
41	Long-lasting near-infrared persistent luminescence from \hat{I}^2 -Ga2O3:Cr3+ nanowire assemblies. Journal of Luminescence, 2011, 131, 2784-2787.	3.1	60
42	Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon, 2011, 49, 2475-2482.	10.3	63
43	Spontaneous Growth of ZnCO ₃ Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures. Chemistry of Materials, 2010, 22, 149-154.	6.7	58
44	Combined Apertureless Near-Field Optical Second-Harmonic Generation/Atomic Force Microscopy Imaging and Nanoscale Limit of Detection. Applied Spectroscopy, 2010, 64, 1-7.	2.2	11
45	Near infrared long-persistent phosphorescence in La_3Ga_5GeO_14:Cr^3+ phosphor. Optics Express, 2010, 18, 20215.	3.4	110
46	Red, Green, and Blue Luminescence from ZnGa ₂ O ₄ Nanowire Arrays. Journal of Physical Chemistry Letters, 2010, 1, 354-357.	4.6	69
47	Zinc Oxide Microtowers by Vapor Phase Homoepitaxial Regrowth. Advanced Materials, 2009, 21, 890-896.	21.0	33
48	Three-Dimensional Germanium Oxide Nanowire Networks. Crystal Growth and Design, 2009, 9, 35-39.	3.0	29
49	Vapor-Phase Synthesis of Gallium Phosphide Nanowires. Crystal Growth and Design, 2009, 9, 525-527.	3.0	28
50	A convenient method for synthesis of glyconanoparticles for colorimetric measuring carbohydrate–protein interactions. Biochemical and Biophysical Research Communications, 2009, 389, 22-27.	2.1	48
51	Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres by a Low-Temperature Oxidization Method. ACS Nano, 2009, 3, 273-278.	14.6	108
52	Germanium-catalyzed hierarchical Al2O3 and SiO2 nanowire bunch arrays. Nanoscale, 2009, 1, 347.	5.6	23
53	Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+,Dy3+,Er3+ phosphors based on persistent energy transfer. Applied Physics Letters, 2009, 95, .	3.3	85
54	Polychromatic X-ray micro- and nanodiffraction for spatially-resolved structural studies. Thin Solid Films, 2008, 516, 8013-8021.	1.8	24

#	Article	IF	Citations
55	Generation of nitrogen acceptors in ZnO using pulse thermal processing. Applied Physics Letters, 2008, 92, 151112.	3.3	16
56	Single-Crystal Organic Nanowires of Copper-Tetracyanoquinodimethane: Synthesis, Patterning, Characterization, and Device Applications. Angewandte Chemie, 2007, 119, 2704-2708.	2.0	22
57	Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor. Applied Catalysis A: General, 2007, 326, 89-99.	4.3	145
58	Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays. Applied Physics Letters, 2006, 89, 223110.	3.3	157
59	Ionothermal Synthesis of Hierarchical ZnO Nanostructures from Ionic-Liquid Precursors. Chemistry of Materials, 2006, 18, 4473-4477.	6.7	149
60	Ultrastable Gold Nanocatalyst Supported by Nanosized Non-Oxide Substrate. Angewandte Chemie - International Edition, 2006, 45, 3614-3618.	13.8	103
61	Tomonaga-Luttinger Liquid and Coulomb Blockade in Multiwall Carbon Nanotubes under Pressure. Physical Review Letters, 2006, 97, 176401.	7.8	23
62	Facile one-pot synthesis of gold nanoparticles stabilized with bifunctional amino/siloxy ligands. Journal of Colloid and Interface Science, 2005, 287, 360-365.	9.4	28
63	Straight single-crystalline germanium nanowires and their patterns grown on sol–gel prepared gold/silica substrates. Solid State Communications, 2005, 134, 251-255.	1.9	16
64	Gallium-catalyzed silicon oxide nanowire growth. Tsinghua Science and Technology, 2005, 10, 718-728.	6.1	0
65	Structural control of vertically aligned multiwalled carbon nanotubes by radio-frequency plasmas. Applied Physics Letters, 2005, 87, 173106.	3.3	20
66	High-density vertically aligned multiwalled carbon nanotubes with tubular structures. Applied Physics Letters, 2005, 86, 253105.	3.3	38
67	Nanowire Array Gratings with ZnO Combs. Nano Letters, 2005, 5, 723-727.	9.1	103
68	Low Temperature Growth of Boron Nitride Nanotubes on Substrates. Nano Letters, 2005, 5, 2528-2532.	9.1	176
69	Ultrastable Au Nanocatalyst Supported on Surface-Modified TiO2Nanocrystals. Journal of the American Chemical Society, 2005, 127, 10480-10481.	13.7	202
70	A Dual-RF-Plasma Approach for Controlling the Graphitic Order and Diameters of Vertically-Aligned Multiwall Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2004, 858, 170.	0.1	0
71	Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification. Journal of Colloid and Interface Science, 2004, 277, 35-42.	9.4	60
72	Linear conductance of multiwalled carbon nanotubes at high temperatures. Solid State Communications, 2004, 129, 407-410.	1.9	12

#	Article	IF	Citations
73	Synthesis of Ordered Mixed Titania and Silica Mesostructured Monoliths for Gold Catalysts. Journal of Physical Chemistry B, 2004, 108, 20038-20044.	2.6	42
74	Electrical Properties of Tin Dioxide Two-Dimensional Nanostructures. Journal of Physical Chemistry B, 2004, 108, 1882-1887.	2.6	74
75	Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Advanced Functional Materials, 2003, 13, 9-24.	14.9	1,102
76	Hierarchically ordered carbon tubes. Chemical Physics Letters, 2003, 371, 433-437.	2.6	5
77	The unconventional electronic properties of multiwall carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 214-215.	2.7	6
78	Temperature Dependence of Morphologies of Aligned Silicon Oxide Nanowire Assemblies Catalyzed by Molten Gallium. Nano Letters, 2003, 3, 1279-1284.	9.1	122
79	Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts. Journal of Physical Chemistry B, 2003, 107, 659-663.	2.6	1,049
80	Gallium-mediated growth of multiwall carbon nanotubes. Applied Physics Letters, 2003, 82, 1947-1949.	3.3	37
81	Patterned Growth of Vertically Aligned Carbon Nanotubes on Pre-patterned Iron/Silica Substrates Prepared by Solâ´´Gel and Shadow Masking. Journal of Physical Chemistry B, 2003, 107, 1338-1344.	2.6	27
82	Synthesis of ultrahigh-density ordered arrays of metallic nickel nanowires in mesoporous silica films. Chemical Communications, 2003, , 2584.	4.1	13
83	Liquid gallium ball/crystalline silicon polyhedrons/aligned silicon oxide nanowires sandwich structure: An interesting nanowire growth route. Applied Physics Letters, 2003, 83, 3159-3161.	3.3	36
84	NANOBELTS OF SEMICONDUCTIVE OXIDES: A STRUCTURALLY AND MORPHOLOGICALLY CONTROLLED NANOMATERIALS SYSTEM. International Journal of Nanoscience, 2002, 01, 41-51.	0.7	16
85	Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires. Journal of the American Chemical Society, 2002, 124, 1817-1822.	13.7	351
86	Gallium Oxide Nanoribbons and Nanosheets. Journal of Physical Chemistry B, 2002, 106, 902-904.	2.6	260
87	Growth and Structure Evolution of Novel Tin Oxide Diskettes. Journal of the American Chemical Society, 2002, 124, 8673-8680.	13.7	325
88	Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Applied Physics Letters, 2002, 80, 309-311.	3.3	164
89	Structures of Oxide Nanobelts and Nanowires. Microscopy and Microanalysis, 2002, 8, 467-474.	0.4	28
90	Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81, 1869-1871.	3.3	1,400

#	Article	IF	Citations
91	Junctions and Networks of SnO Nanoribbons. Advanced Materials, 2002, 14, 1029.	21.0	191
92	Preparation of monodispersed multi-walled carbon nanotubes in chemical vapor deposition. Chemical Physics Letters, 2002, 356, 563-566.	2.6	15
93	Raman Studies of Semiconducting Oxide Nanobelts. Journal of Nanoscience and Nanotechnology, 2002, 2, 499-502.	0.9	4
94	Work function at the tips of multiwalled carbon nanotubes. Applied Physics Letters, 2001, 78, 1757-1759.	3.3	228
95	Very Low-Field Emission from Aligned and Opened Carbon Nanotube Arrays. Journal of Physical Chemistry B, 2001, 105, 1519-1522.	2.6	54
96	Nanobelts of Semiconducting Oxides. Science, 2001, 291, 1947-1949.	12.6	5,624
97	Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders. Journal of Physical Chemistry B, 2001, 105, 2507-2514.	2.6	182
98	Ultra-long single crystalline nanoribbons of tin oxide. Solid State Communications, 2001, 118, 351-354.	1.9	217
99	Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science and Engineering C, 2001, 16, 3-10.	7.3	125
100	Nano-Scale Mechanics of Nanotubes, Nanowires, and Nanobelts. Advanced Engineering Materials, 2001, 3, 657.	3.5	98
101	Temperature Dependence of Si Nanowire Morphology. Advanced Materials, 2001, 13, 317-320.	21.0	113
102	Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate. Journal of Physics and Chemistry of Solids, 2000, 61, 1171-1174.	4.0	28
103	Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids, 2000, 61, 1153-1158.	4.0	386
104	Carbon nanotube arrays. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 11-15.	5.6	49
105	Preparation of very long and open aligned carbon nanotubes. Science in China Series A: Mathematics, 2000, 43, 210-216.	0.5	0
106	Effects of temperature oscillations on the growth of carbon nanotubes by chemical vapor deposition. Applied Physics Letters, 2000, 76, 828-830.	3.3	7
107	Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Applied Physics Letters, 1999, 74, 3152-3154.	3.3	213
108	Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chemical Physics Letters, 1999, 299, 97-102.	2.6	159

ZHENGWEI PAN

#	Article	IF	CITATIONS
109	Growth of straight nanotubes with a cobalt–nickel catalyst by chemical vapor deposition. Applied Physics Letters, 1999, 74, 644-646.	3.3	54
110	Third-order optical nonlinearity of the carbon nanotubes. Applied Physics Letters, 1999, 74, 164-166.	3.3	147
111	Laser synthesis and crystallization of nanocomposite Si/C/N powder. Journal of Materials Research, 1998, 13, 1996-2002.	2.6	9
112	Growth of carbon nanotubes on cobalt disilicide precipitates by chemical vapor deposition. Applied Physics Letters, 1998, 72, 3297-3299.	3.3	44
113	Effects of Carbon, Nickel, and Molybdenum on the High Temperature Strength of Fe–Cr–Ni Alloys. Materials Transactions, JIM, 1996, 37, 138-141.	0.9	1