Philippe Leproux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241263/publications.pdf

Version: 2024-02-01

331670 315739 1,782 115 21 38 citations h-index g-index papers 117 117 117 1554 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Toward whole brain label-free molecular imaging with single-cell resolution sing ultra-broadband multiplex CARS microspectroscopy., 2022,,.		1
2	Multiplex CARS microspectroscopy in the "long-pulse―regime: where are we now?. , 2022, , .		1
3	Visualizing intra-medulla lipids in human hair using ultra-multiplex CARS, SHG, and THG microscopy. Analyst, The, 2021, 146, 1163-1168.	3 . 5	11
4	Visualization of water concentration distribution in human skin by ultra-multiplex coherent anti-Stokes Raman scattering (CARS) microscopy. Applied Physics Express, 2021, 14, 042010.	2.4	3
5	Versatile supercontinuum generation by using $\ddot{l}^{\ddagger}(2)$ and $\ddot{l}^{\ddagger}(3)$ nonlinearities in PPLN crystal for direct CARS measurement. , 2021, , .		O
6	Kerr beam self-cleaning and supercontinuum generation in a graded-index few-mode photonic crystal fiber. , 2021, , .		0
7	Segmentation integration in multivariate curve resolution applied to coherent anti-Stokes Raman scattering., 2021,,.		1
8	Visualization of intracellular lipid metabolism in brown adipocytes by time-lapse ultra-multiplex CARS microspectroscopy with an onstage incubator. Journal of Chemical Physics, 2021, 155, 125102.	3.0	5
9	Mapping the second and third order nonlinear susceptibilities in a thermally poled microimprinted niobium borophosphate glass. Optical Materials Express, 2021, 11, 3411.	3.0	3
10	Multiplex coherent anti-Stokes Raman scattering microspectroscopy detection of lipid droplets in cancer cells expressing TrkB. Scientific Reports, 2020, 10, 16749.	3.3	11
11	Multimodal nonlinear optical imaging of <i>Caenorhabditis elegans </i> with multiplex coherent anti-Stokes Raman scattering, third-harmonic generation, second-harmonic generation, and two-photon excitation fluorescence. Applied Physics Express, 2020, 13, 072002.	2.4	7
12	Photo-induced meta-stable polar conformations in polystyrene microspheres revealed by time-resolved SHG microscopy. Applied Physics Express, 2020, 13, 052003.	2.4	4
13	\ddot{l} ‡(3) nonlinear fast imaging and its relative quantification after thermal poling of niobium borophospate glass. , 2020, , .		0
14	Generation of kilovolt, picosecond electric pulses by coherent combining in optoelectronic system. , 2020, , .		0
15	Multiplex coherent anti-Stokes Raman scattering highlights state of chromatin condensation in CH region. Scientific Reports, 2019, 9, 13862.	3.3	24
16	Measurement of the third order nonlinear susceptibility of paratellurite single crystal using multiplex CARS. AIP Advances, 2019, 9, 105301.	1.3	3
17	Characterization of Intra/Extracellular Water States Probed by Ultrabroadband Multiplex Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopic Imaging. Journal of Physical Chemistry A, 2019, 123, 3928-3934.	2.5	19
18	Measurement of the Third Order Nonlinear Susceptibility of a Paratellurite Single Crystal using Multiplex CARS. , 2019, , .		0

#	Article	IF	Citations
19	Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper based on accelerating self-imaging and dissipative landscape. Optics Express, 2019, 27, 24018.	3.4	44
20	Ultra-multiplex CARS spectroscopic imaging with 1-millisecond pixel dwell time. OSA Continuum, 2019, 2, 1693.	1.8	16
21	Ultrabroadband Multiplex Coherent anti-Stokes Raman Scattering (CARS) Microspectroscopy Using a CCD Camera with an InGaAs Image Intensifier. Chemistry Letters, 2018, 47, 704-707.	1.3	2
22	Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells. Biomedical Optics Express, 2018, 9, 245.	2.9	16
23	Invited Article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier. APL Photonics, 2018, 3, .	5.7	22
24	CARS molecular fingerprinting using a sub-nanosecond supercontinuum light source. , 2018, , .		0
25	Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy. , 2018, , .		0
26	SHG-specificity of cellular Rootletin filaments enables na \tilde{A} ve imaging with universal conservation. Scientific Reports, 2017, 7, 39967.	3.3	24
27	Effect of a Waterproofing Agent on the Penetration Process of Water into a Cellulose Acetate Film by Time-resolved Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy. Chemistry Letters, 2017, 46, 833-836.	1.3	1
28	Effect of a Stretching Procedure on the Penetration Process of Water into a Cellulose Acetate Film by Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy. Chemistry Letters, 2017, 46, 92-94.	1.3	2
29	Identification of intracellular squalene in living algae, <i>Aurantiochytrium mangrovei</i> with hyperâ€spectral coherent antiâ€6tokes Raman microscopy using a subâ€nanosecond supercontinuum laser source. Journal of Raman Spectroscopy, 2017, 48, 8-15.	2.5	16
30	Spectro-temporal shaping of supercontinuum for subnanosecond time-coded M-CARS spectroscopy. Optics Letters, 2016, 41, 5007.	3.3	3
31	Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber. Optics Letters, 2016, 41, 5785.	3.3	107
32	Coherent anti-Stokes Raman scattering under electric field stimulation. Physical Review B, 2016, 94, .	3.2	9
33	Dynamical study of the water penetration process into a cellulose acetate film studied by coherent anti-Stokes Raman scattering (CARS) microspectroscopy. Chemical Physics Letters, 2016, 655-656, 86-90.	2.6	8
34	Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source. Journal of Biophotonics, 2016, 9, 709-714.	2.3	21
35	Hyperspectral coherent Raman imaging – principle, theory, instrumentation, and applications to life sciences. Journal of Raman Spectroscopy, 2016, 47, 116-123.	2.5	32
36	Supercontinuum Generation in an Ytterbium-Doped Photonic Crystal Fiber for CARS Spectroscopy. IEEE Photonics Technology Letters, 2016, 28, 2011-2014.	2.5	7

#	Article	IF	Citations
37	Multiphoton imaging with a nanosecond supercontinuum source. , 2016, , .		1
38	M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule. , 2016, , .		0
39	All-normal dispersion supercontinuum generation in the near-infrared by Raman conversion in standard optical fiber. Proceedings of SPIE, 2016, , .	0.8	1
40	Nanosecond coherent anti-Stokes Raman scattering for particle size characterization. Proceedings of SPIE, $2016, $, .	0.8	0
41	Multimodal Imaging of Living Cells with Multiplex Coherent Anti-stokes Raman Scattering (CARS), Third-order Sum Frequency Generation (TSFG) and Two-photon Excitation Fluorescence (TPEF) Using a Nanosecond White-light Laser Source. Analytical Sciences, 2015, 31, 299-305.	1.6	11
42	Imaging microfractures and other abnormalities of bone using a supercontinuum laser source with wavelengths in the four NIR optical windows. Proceedings of SPIE, 2015 , , .	0.8	1
43	Near-infrared supercontinuum laser beam source in the second and third near-infrared optical windows used to image more deeply through thick tissue as compared with images from a lamp source. Journal of Biomedical Optics, 2015, 20, 030501.	2.6	20
44	Imaging of tissue using a NIR supercontinuum laser light source with wavelengths in the second and third NIR optical windows. , 2015 , , .		3
45	Efficiency of dispersive wave generation in dual concentric core microstructured fiber. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1676.	2.1	5
46	Raman optical activity spectroscopy by visible-excited coherent anti-Stokes Raman scattering. Optics Letters, 2015, 40, 4170.	3.3	16
47	Multimodal and multiplex spectral imaging of rat cornea <i>ex vivo</i> using a whiteâ€light laser source. Journal of Biophotonics, 2015, 8, 705-713.	2.3	8
48	Design of an Optimized Distal Optic for Non Linear Endomicroscopy. , 2015, , .		0
49	Surfactant Uptake Dynamics in Mammalian Cells Elucidated with Quantitative Coherent Anti-Stokes Raman Scattering Microspectroscopy. PLoS ONE, 2014, 9, e93401.	2.5	14
50	Linear and nonlinear Raman microspectroscopy: History, instrumentation, and applications. Optical Review, 2014, 21, 752-761.	2.0	13
51	Electronically resonant third-order sum frequency generation spectroscopy using a nanosecond white-light supercontinuum. Optics Express, 2014, 22, 10416.	3.4	8
52	Chemical imaging of lipid droplets in muscle tissues using hyperspectral coherent Raman microscopy. Histochemistry and Cell Biology, 2014, 141, 263-273.	1.7	35
53	Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source. Chemical Physics, 2013, 419, 156-162.	1.9	11
54	Frequency-dissymmetric parametric sideband generation in a microstructured fiber. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2889.	2.1	1

#	Article	lF	Citations
55	Bright dispersive waves in dual-core microstructured fiber under different laser pumps. , 2013, , .		O
56	Frequency-dissymmetric nonlinear sideband generation in a photonic crystal fibre., 2013,,.		0
57	Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent) Tj ETQq $1\ 1\ C$).784314 rg 3.4	BT /Overlock 62
58	Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application. Optics Express, 2012, 20, 29705.	3.4	8
59	Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration. Optics Express, 2012, 20, 10750.	3.4	14
60	Observation of Raman Optical Activity by Heterodyne-Detected Polarization-Resolved Coherent Anti-Stokes Raman Scattering. Physical Review Letters, 2012, 109, 083901.	7.8	43
61	A novel electro-optical pump-probe system for bioelectromagnetic investigations. Proceedings of SPIE, 2012, , .	0.8	0
62	Compact supercontinuum sources and their biomedical applications. Optical Fiber Technology, 2012, 18, 375-378.	2.7	154
63	Second and third order susceptibilities mixing for supercontinuum generation and shaping. Optical Fiber Technology, 2012, 18, 283-289.	2.7	15
64	Protein Secondary Structure Imaging with Ultrabroadband Multiplex Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy. Journal of Physical Chemistry B, 2012, 116, 1452-1457.	2.6	21
65	Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source. Optical Fiber Technology, 2012, 18, 388-393.	2.7	3
66	Flow cytometer based on triggered supercontinuum laser illumination. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 611-617.	1.5	4
67	Lasers multicolores pour le diagnostic cellulaire. Photoniques, 2012, , 50-54.	0.1	0
68	Blue-Extended Sub-Nanosecond Supercontinuum Generation in Simply Designed Nonlinear Microstructured Optical Fibers. Journal of Lightwave Technology, 2011, 29, 146-152.	4.6	17
69	Experimental study and optimisation of pump laser parameters for supercontinuum generation. , 2011, , .		0
70	New opportunities offered by compact subâ€nanosecond supercontinuum sources in ultraâ€broadband multiplex CARS microspectroscopy. Journal of Raman Spectroscopy, 2011, 42, 1871-1874.	2.5	17
71	Spectro-temporal characterisation of incoherent supercontinuum subnanosecond laser emission for multiplex-CARS microspectroscopy. , $2011, , .$		0
72	Adjustable supercontinuum laser source with low coherence length and low timing jitter. Proceedings of SPIE, 2010, , .	0.8	0

#	Article	IF	CITATIONS
73	Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method. Angewandte Chemie - International Edition, 2010, 49, 6773-6777.	13.8	97
74	Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications. Optical Materials, 2010, 32, 1002-1006.	3.6	17
75	Optical continuum generation seeded by stimulated Raman scattering. , 2010, , .		0
76	Quantitative CARS Spectral Imaging of a Single Living Cell in the Fingerprint Region. , 2010, , .		0
77	Structured-Core GeO\$_{2}\$-Doped Photonic-Crystal Fibers for Parametric and Supercontinuum Generation. IEEE Photonics Technology Letters, 2010, 22, 1259-1261.	2.5	19
78	Nonlinear Pulse Reshaping With Highly Birefringent Photonic Crystal Fiber for OCDMA Receivers. IEEE Photonics Technology Letters, 2010, 22, 1367-1369.	2.5	9
79	Unprecedented Raman cascading and four-wave mixing from second-harmonic generation in optical fiber. Optics Letters, 2010, 35, 145.	3.3	10
80	Experimental and numerical investigation of the impact of pulse duration on supercontinuum generation in a photonic crystal fiber. , 2010 , , .		0
81	Broadband Four-Wave Mixing and Supercontinuum Generation in Multi-Component-Core Photonic Crystal Fiber., 2009,,.		0
82	Microstructured fibers with high lanthanum oxide glass core for nonlinear applications. , 2009, , .		1
83	Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation. Optics Express, 2009, 17, 15392.	3.4	24
84	Intermodal Four-Wave Mixing in Structured-Core Photonic Crystal Fiber: Experimental Results. , 2009, , .		1
85	Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared. Optics Letters, 2008, 33, 923.	3.3	74
86	Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation. Optics Letters, 2008, 33, 2011.	3.3	15
87	BPM-Numerical Study of Microstructured Fiber With High Difference Index Profile. Journal of Lightwave Technology, 2008, 26, 3261-3268.	4.6	0
88	Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy. Optics Express, 2008, 16, 18844.	3.4	9
89	Controlling intermodal four-wave mixing from the design of microstructured optical fibers. Optics Express, 2008, 16, 21997.	3.4	10
90	Discrete spectral selection and wavelength encoding from a visible continuum using optical MEMS. Journal of Micromechanics and Microengineering, 2008, 18, 065010.	2.6	1

#	Article	IF	Citations
91	Methods for visible supercontinuum generation in doped/undoped holey fibres. Proceedings of SPIE, 2008, , .	0.8	1
92	Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation. , 2008, , .		0
93	Adaptive spectral selection of a super continuum source using optical MEMS for biomedical diagnosis. , 2008, , .		O
94	Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber. Optics Letters, 2007, 32, 2173.	3.3	71
95	Ultrabroadband (>2000 cm^â^'1) multiplex coherent anti-Stokes Raman scattering spectroscopy using a subnanosecond supercontinuum light source. Optics Letters, 2007, 32, 3050.	3.3	34
96	Q-switched Yb-doped nonlinear microstructured fiber laser for the emission of broadband spectrum. Optics Letters, 2007, 32, 3299.	3.3	17
97	Supercontinuum generation in a nonlinear Yb-doped, double-clad, microstructured fiber. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 788.	2.1	24
98	High spectral power density supercontinuum generation in a nonlinear fiber amplifier. Optics Express, 2007, 15, 11358.	3.4	47
99	Broadband ultrafast spectroscopy using a photonic crystal fiber: application to the photophysics of malachite green. Optics Express, 2007, 15, 16124.	3.4	12
100	Compact sub-nanosecond wideband laser source for biological applications. Applied Physics B: Lasers and Optics, 2007, 86, 601-604.	2.2	2
101	Microstructured fibers with highly nonlinear materials. Optical and Quantum Electronics, 2007, 39, 1057-1069.	3.3	23
102	Dynamics of modulation instability in large normal dispersion regime induced by double wavelength pumping. , 2006, , .		0
103	Visible Supercontinuum Generation in Holey Fibers by Dual-Wavelength Subnanosecond Pumping. IEEE Photonics Technology Letters, 2006, 18, 2466-2468.	2.5	11
104	Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror. Optics Express, 2006, 14, 7093.	3.4	10
105	Photonic crystal fibres for lasers and amplifiers. Comptes Rendus Physique, 2006, 7, 224-232.	0.9	7
106	Modal properties of solid-core photonic bandgap fibers. Photonics and Nanostructures - Fundamentals and Applications, 2006, 4, 116-122.	2.0	8
107	Second and third order nonlinearities in a highly birefringent holey fiber for supercontinuum generation. , 2006, , .		0
108	Second Harmonic Generation in a Highly Birefringent Nonlinear Microstructured Fibre. , 2006, , .		1

#	Article	IF	CITATION
109	Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study. Optics Communications, 2005, 244, 209-217.	2.1	6
110	Ultra wide band supercontinuum generation in air-silica holey fibers by SHG-induced modulation instabilities. Optics Express, 2005, 13, 7399.	3.4	37
111	Raman cascade suppression by using wide band parametric conversion in large normal dispersion regime. Optics Express, 2005, 13, 8584.	3.4	12
112	White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Optics Express, 2004, 12, 4366.	3 . 4	159
113	Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump. Optical Fiber Technology, 2001, 7, 324-339.	2.7	60
114	Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction. Optics Communications, 2000, 174, 419-425.	2.1	5
115	Labelâ€free detection of polysulfides and glycogen of Cyanidium caldarium using ultraâ€multiplex coherent antiâ€6tokes Raman scattering microspectroscopy. Journal of Raman Spectroscopy, 0, , .	2.5	7