
## Philippe Leproux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241263/publications.pdf Version: 2024-02-01



DHILIDDE LEDDOLLY

| #  | Article                                                                                                                                                                                                     | IF               | CITATIONS          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 1  | White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Optics Express, 2004, 12, 4366.                                                  | 3.4              | 159                |
| 2  | Compact supercontinuum sources and their biomedical applications. Optical Fiber Technology, 2012, 18, 375-378.                                                                                              | 2.7              | 154                |
| 3  | Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber. Optics Letters, 2016, 41, 5785.                                 | 3.3              | 107                |
| 4  | Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method. Angewandte Chemie - International Edition, 2010, 49, 6773-6777.                               | 13.8             | 97                 |
| 5  | Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared. Optics Letters, 2008, 33, 923.                                     | 3.3              | 74                 |
| 6  | Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber. Optics Letters, 2007, 32, 2173.                                                                       | 3.3              | 71                 |
| 7  | Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent) Tj ETQq1 1 0.                                                                                              | 784314 rg<br>3.4 | BT /Overlock<br>62 |
| 8  | Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump.<br>Optical Fiber Technology, 2001, 7, 324-339.                                                             | 2.7              | 60                 |
| 9  | High spectral power density supercontinuum generation in a nonlinear fiber amplifier. Optics Express, 2007, 15, 11358.                                                                                      | 3.4              | 47                 |
| 10 | Spatial beam self-cleaning and supercontinuum generation with Yb-doped multimode graded-index<br>fiber taper based on accelerating self-imaging and dissipative landscape. Optics Express, 2019, 27, 24018. | 3.4              | 44                 |
| 11 | Observation of Raman Optical Activity by Heterodyne-Detected Polarization-Resolved Coherent<br>Anti-Stokes Raman Scattering. Physical Review Letters, 2012, 109, 083901.                                    | 7.8              | 43                 |
| 12 | Ultra wide band supercontinuum generation in air-silica holey fibers by SHG-induced modulation instabilities. Optics Express, 2005, 13, 7399.                                                               | 3.4              | 37                 |
| 13 | Chemical imaging of lipid droplets in muscle tissues using hyperspectral coherent Raman microscopy.<br>Histochemistry and Cell Biology, 2014, 141, 263-273.                                                 | 1.7              | 35                 |
| 14 | Ultrabroadband (>2000 cm^â^1) multiplex coherent anti-Stokes Raman scattering spectroscopy using<br>a subnanosecond supercontinuum light source. Optics Letters, 2007, 32, 3050.                            | 3.3              | 34                 |
| 15 | Hyperspectral coherent Raman imaging – principle, theory, instrumentation, and applications to life<br>sciences. Journal of Raman Spectroscopy, 2016, 47, 116-123.                                          | 2.5              | 32                 |
| 16 | Supercontinuum generation in a nonlinear Yb-doped, double-clad, microstructured fiber. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 788.                                         | 2.1              | 24                 |
| 17 | Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation. Optics Express, 2009, 17, 15392.                                          | 3.4              | 24                 |
| 18 | SHG-specificity of cellular Rootletin filaments enables naÃ <sup>-</sup> ve imaging with universal conservation.<br>Scientific Reports, 2017, 7, 39967.                                                     | 3.3              | 24                 |

Philippe Leproux

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Multiplex coherent anti-Stokes Raman scattering highlights state of chromatin condensation in CH<br>region. Scientific Reports, 2019, 9, 13862.                                                                                                                   | 3.3 | 24        |
| 20 | Microstructured fibers with highly nonlinear materials. Optical and Quantum Electronics, 2007, 39, 1057-1069.                                                                                                                                                     | 3.3 | 23        |
| 21 | Invited Article: CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier. APL Photonics, 2018, 3, .                                                                                                                            | 5.7 | 22        |
| 22 | Protein Secondary Structure Imaging with Ultrabroadband Multiplex Coherent Anti-Stokes Raman<br>Scattering (CARS) Microspectroscopy. Journal of Physical Chemistry B, 2012, 116, 1452-1457.                                                                       | 2.6 | 21        |
| 23 | Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source. Journal of<br>Biophotonics, 2016, 9, 709-714.                                                                                                                                | 2.3 | 21        |
| 24 | Near-infrared supercontinuum laser beam source in the second and third near-infrared optical<br>windows used to image more deeply through thick tissue as compared with images from a lamp<br>source. Journal of Biomedical Optics, 2015, 20, 030501.             | 2.6 | 20        |
| 25 | Structured-Core GeO\$_{2}\$-Doped Photonic-Crystal Fibers for Parametric and Supercontinuum Generation. IEEE Photonics Technology Letters, 2010, 22, 1259-1261.                                                                                                   | 2.5 | 19        |
| 26 | Characterization of Intra/Extracellular Water States Probed by Ultrabroadband Multiplex Coherent<br>Anti-Stokes Raman Scattering (CARS) Spectroscopic Imaging. Journal of Physical Chemistry A, 2019, 123,<br>3928-3934.                                          | 2.5 | 19        |
| 27 | Q-switched Yb-doped nonlinear microstructured fiber laser for the emission of broadband spectrum.<br>Optics Letters, 2007, 32, 3299.                                                                                                                              | 3.3 | 17        |
| 28 | Highly germanium and lanthanum modified silica based glasses in microstructured optical fibers for non-linear applications. Optical Materials, 2010, 32, 1002-1006.                                                                                               | 3.6 | 17        |
| 29 | Blue-Extended Sub-Nanosecond Supercontinuum Generation in Simply Designed Nonlinear<br>Microstructured Optical Fibers. Journal of Lightwave Technology, 2011, 29, 146-152.                                                                                        | 4.6 | 17        |
| 30 | New opportunities offered by compact subâ€nanosecond supercontinuum sources in ultraâ€broadband<br>multiplex CARS microspectroscopy. Journal of Raman Spectroscopy, 2011, 42, 1871-1874.                                                                          | 2.5 | 17        |
| 31 | Raman optical activity spectroscopy by visible-excited coherent anti-Stokes Raman scattering. Optics<br>Letters, 2015, 40, 4170.                                                                                                                                  | 3.3 | 16        |
| 32 | Identification of intracellular squalene in living algae, <i>Aurantiochytrium mangrovei</i> with<br>hyperâ€spectral coherent antiâ€Stokes Raman microscopy using a subâ€nanosecond supercontinuum laser<br>source. Journal of Raman Spectroscopy, 2017, 48, 8-15. | 2.5 | 16        |
| 33 | Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells. Biomedical Optics<br>Express, 2018, 9, 245.                                                                                                                                      | 2.9 | 16        |
| 34 | Ultra-multiplex CARS spectroscopic imaging with 1-millisecond pixel dwell time. OSA Continuum, 2019, 2, 1693.                                                                                                                                                     | 1.8 | 16        |
| 35 | Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation. Optics Letters, 2008, 33, 2011.                                                                                                                            | 3.3 | 15        |
| 36 | Second and third order susceptibilities mixing for supercontinuum generation and shaping. Optical<br>Fiber Technology, 2012, 18, 283-289.                                                                                                                         | 2.7 | 15        |

Philippe Leproux

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration. Optics<br>Express, 2012, 20, 10750.                                                                                                                                                              | 3.4 | 14        |
| 38 | Surfactant Uptake Dynamics in Mammalian Cells Elucidated with Quantitative Coherent Anti-Stokes<br>Raman Scattering Microspectroscopy. PLoS ONE, 2014, 9, e93401.                                                                                                                    | 2.5 | 14        |
| 39 | Linear and nonlinear Raman microspectroscopy: History, instrumentation, and applications. Optical Review, 2014, 21, 752-761.                                                                                                                                                         | 2.0 | 13        |
| 40 | Raman cascade suppression by using wide band parametric conversion in large normal dispersion regime. Optics Express, 2005, 13, 8584.                                                                                                                                                | 3.4 | 12        |
| 41 | Broadband ultrafast spectroscopy using a photonic crystal fiber: application to the photophysics of malachite green. Optics Express, 2007, 15, 16124.                                                                                                                                | 3.4 | 12        |
| 42 | Visible Supercontinuum Generation in Holey Fibers by Dual-Wavelength Subnanosecond Pumping. IEEE<br>Photonics Technology Letters, 2006, 18, 2466-2468.                                                                                                                               | 2.5 | 11        |
| 43 | Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source. Chemical Physics, 2013, 419, 156-162.                                                                                                             | 1.9 | 11        |
| 44 | Multimodal Imaging of Living Cells with Multiplex Coherent Anti-stokes Raman Scattering (CARS),<br>Third-order Sum Frequency Generation (TSFG) and Two-photon Excitation Fluorescence (TPEF) Using a<br>Nanosecond White-light Laser Source. Analytical Sciences, 2015, 31, 299-305. | 1.6 | 11        |
| 45 | Multiplex coherent anti-Stokes Raman scattering microspectroscopy detection of lipid droplets in cancer cells expressing TrkB. Scientific Reports, 2020, 10, 16749.                                                                                                                  | 3.3 | 11        |
| 46 | Visualizing intra-medulla lipids in human hair using ultra-multiplex CARS, SHG, and THG microscopy.<br>Analyst, The, 2021, 146, 1163-1168.                                                                                                                                           | 3.5 | 11        |
| 47 | Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror. Optics Express, 2006, 14, 7093.                                                                        | 3.4 | 10        |
| 48 | Controlling intermodal four-wave mixing from the design of microstructured optical fibers. Optics Express, 2008, 16, 21997.                                                                                                                                                          | 3.4 | 10        |
| 49 | Unprecedented Raman cascading and four-wave mixing from second-harmonic generation in optical fiber. Optics Letters, 2010, 35, 145.                                                                                                                                                  | 3.3 | 10        |
| 50 | Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy. Optics Express, 2008, 16, 18844.                                                                                                              | 3.4 | 9         |
| 51 | Nonlinear Pulse Reshaping With Highly Birefringent Photonic Crystal Fiber for OCDMA Receivers. IEEE<br>Photonics Technology Letters, 2010, 22, 1367-1369.                                                                                                                            | 2.5 | 9         |
| 52 | Coherent anti-Stokes Raman scattering under electric field stimulation. Physical Review B, 2016, 94, .                                                                                                                                                                               | 3.2 | 9         |
| 53 | Modal properties of solid-core photonic bandgap fibers. Photonics and Nanostructures -<br>Fundamentals and Applications, 2006, 4, 116-122.                                                                                                                                           | 2.0 | 8         |
| 54 | Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application. Optics Express, 2012, 20, 29705.                                                                                                                                     | 3.4 | 8         |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Electronically resonant third-order sum frequency generation spectroscopy using a nanosecond white-light supercontinuum. Optics Express, 2014, 22, 10416.                                                                                                                   | 3.4 | 8         |
| 56 | Multimodal and multiplex spectral imaging of rat cornea <i>ex vivo</i> using a whiteâ€light laser source. Journal of Biophotonics, 2015, 8, 705-713.                                                                                                                        | 2.3 | 8         |
| 57 | Dynamical study of the water penetration process into a cellulose acetate film studied by coherent<br>anti-Stokes Raman scattering (CARS) microspectroscopy. Chemical Physics Letters, 2016, 655-656, 86-90.                                                                | 2.6 | 8         |
| 58 | Photonic crystal fibres for lasers and amplifiers. Comptes Rendus Physique, 2006, 7, 224-232.                                                                                                                                                                               | 0.9 | 7         |
| 59 | Supercontinuum Generation in an Ytterbium-Doped Photonic Crystal Fiber for CARS Spectroscopy. IEEE<br>Photonics Technology Letters, 2016, 28, 2011-2014.                                                                                                                    | 2.5 | 7         |
| 60 | Multimodal nonlinear optical imaging of <i>Caenorhabditis elegans</i> with multiplex coherent<br>anti-Stokes Raman scattering, third-harmonic generation, second-harmonic generation, and<br>two-photon excitation fluorescence. Applied Physics Express, 2020, 13, 072002. | 2.4 | 7         |
| 61 | Labelâ€free detection of polysulfides and glycogen of Cyanidium caldarium using ultraâ€multiplex<br>coherent antiâ€Stokes Raman scattering microspectroscopy. Journal of Raman Spectroscopy, 0, , .                                                                         | 2.5 | 7         |
| 62 | Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study. Optics Communications, 2005, 244, 209-217.                                                                                        | 2.1 | 6         |
| 63 | Theoretical and experimental study of loss at splices between standard single-mode fibres and Er-doped fibres versus direction. Optics Communications, 2000, 174, 419-425.                                                                                                  | 2.1 | 5         |
| 64 | Efficiency of dispersive wave generation in dual concentric core microstructured fiber. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1676.                                                                                                       | 2.1 | 5         |
| 65 | Visualization of intracellular lipid metabolism in brown adipocytes by time-lapse ultra-multiplex CARS microspectroscopy with an onstage incubator. Journal of Chemical Physics, 2021, 155, 125102.                                                                         | 3.0 | 5         |
| 66 | Flow cytometer based on triggered supercontinuum laser illumination. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 611-617.                                                                                                | 1.5 | 4         |
| 67 | Photo-induced meta-stable polar conformations in polystyrene microspheres revealed by time-resolved SHG microscopy. Applied Physics Express, 2020, 13, 052003.                                                                                                              | 2.4 | 4         |
| 68 | Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source. Optical Fiber Technology, 2012, 18, 388-393.                                                                                                           | 2.7 | 3         |
| 69 | Imaging of tissue using a NIR supercontinuum laser light source with wavelengths in the second and third NIR optical windows. , 2015, , .                                                                                                                                   |     | 3         |
| 70 | Spectro-temporal shaping of supercontinuum for subnanosecond time-coded M-CARS spectroscopy.<br>Optics Letters, 2016, 41, 5007.                                                                                                                                             | 3.3 | 3         |
| 71 | Measurement of the third order nonlinear susceptibility of paratellurite single crystal using multiplex CARS. AIP Advances, 2019, 9, 105301.                                                                                                                                | 1.3 | 3         |
| 72 | Visualization of water concentration distribution in human skin by ultra-multiplex coherent<br>anti-Stokes Raman scattering (CARS) microscopy. Applied Physics Express, 2021, 14, 042010.                                                                                   | 2.4 | 3         |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mapping the second and third order nonlinear susceptibilities in a thermally poled microimprinted niobium borophosphate glass. Optical Materials Express, 2021, 11, 3411.                                                      | 3.0 | 3         |
| 74 | Compact sub-nanosecond wideband laser source for biological applications. Applied Physics B: Lasers and Optics, 2007, 86, 601-604.                                                                                             | 2.2 | 2         |
| 75 | Effect of a Stretching Procedure on the Penetration Process of Water into a Cellulose Acetate Film<br>by Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy. Chemistry Letters, 2017, 46, 92-94.                   | 1.3 | 2         |
| 76 | Ultrabroadband Multiplex Coherent anti-Stokes Raman Scattering (CARS) Microspectroscopy Using a<br>CCD Camera with an InGaAs Image Intensifier. Chemistry Letters, 2018, 47, 704-707.                                          | 1.3 | 2         |
| 77 | Second Harmonic Generation in a Highly Birefringent Nonlinear Microstructured Fibre. , 2006, , .                                                                                                                               |     | 1         |
| 78 | Discrete spectral selection and wavelength encoding from a visible continuum using optical MEMS.<br>Journal of Micromechanics and Microengineering, 2008, 18, 065010.                                                          | 2.6 | 1         |
| 79 | Methods for visible supercontinuum generation in doped/undoped holey fibres. Proceedings of SPIE, 2008, , .                                                                                                                    | 0.8 | 1         |
| 80 | Microstructured fibers with high lanthanum oxide glass core for nonlinear applications. , 2009, , .                                                                                                                            |     | 1         |
| 81 | Frequency-dissymmetric parametric sideband generation in a microstructured fiber. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2889.                                                                | 2.1 | 1         |
| 82 | Imaging microfractures and other abnormalities of bone using a supercontinuum laser source with wavelengths in the four NIR optical windows. Proceedings of SPIE, 2015, , .                                                    | 0.8 | 1         |
| 83 | Multiphoton imaging with a nanosecond supercontinuum source. , 2016, , .                                                                                                                                                       |     | 1         |
| 84 | All-normal dispersion supercontinuum generation in the near-infrared by Raman conversion in standard optical fiber. Proceedings of SPIE, 2016, , .                                                                             | 0.8 | 1         |
| 85 | Effect of a Waterproofing Agent on the Penetration Process of Water into a Cellulose Acetate Film by<br>Time-resolved Coherent Anti-Stokes Raman Scattering (CARS) Microspectroscopy. Chemistry Letters,<br>2017, 46, 833-836. | 1.3 | 1         |
| 86 | Segmentation integration in multivariate curve resolution applied to coherent anti-Stokes Raman scattering. , 2021, , .                                                                                                        |     | 1         |
| 87 | Intermodal Four-Wave Mixing in Structured-Core Photonic Crystal Fiber: Experimental Results. , 2009, , .                                                                                                                       |     | 1         |
| 88 | Toward whole brain label-free molecular imaging with single-cell resolution sing ultra-broadband multiplex CARS microspectroscopy. , 2022, , .                                                                                 |     | 1         |
| 89 | Multiplex CARS microspectroscopy in the "long-pulse―regime: where are we now?. , 2022, , .                                                                                                                                     |     | 1         |
| 90 | Dynamics of modulation instability in large normal dispersion regime induced by double wavelength pumping. , 2006, , .                                                                                                         |     | 0         |

6

| #   | Article                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Second and third order nonlinearities in a highly birefringent holey fiber for supercontinuum generation. , 2006, , .                         |     | Ο         |
| 92  | BPM-Numerical Study of Microstructured Fiber With High Difference Index Profile. Journal of Lightwave Technology, 2008, 26, 3261-3268.        | 4.6 | 0         |
| 93  | Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation. , 2008, , .                                         |     | Ο         |
| 94  | Broadband Four-Wave Mixing and Supercontinuum Generation in Multi-Component-Core Photonic<br>Crystal Fiber. , 2009, , .                       |     | 0         |
| 95  | Adjustable supercontinuum laser source with low coherence length and low timing jitter.<br>Proceedings of SPIE, 2010, , .                     | 0.8 | 0         |
| 96  | Optical continuum generation seeded by stimulated Raman scattering. , 2010, , .                                                               |     | 0         |
| 97  | Quantitative CARS Spectral Imaging of a Single Living Cell in the Fingerprint Region. , 2010, , .                                             |     | 0         |
| 98  | Experimental study and optimisation of pump laser parameters for supercontinuum generation. , 2011, , .                                       |     | 0         |
| 99  | Spectro-temporal characterisation of incoherent supercontinuum subnanosecond laser emission for multiplex-CARS microspectroscopy. , 2011, , . |     | Ο         |
| 100 | A novel electro-optical pump-probe system for bioelectromagnetic investigations. Proceedings of SPIE, 2012, , .                               | 0.8 | 0         |
| 101 | Bright dispersive waves in dual-core microstructured fiber under different laser pumps. , 2013, , .                                           |     | Ο         |
| 102 | Frequency-dissymmetric nonlinear sideband generation in a photonic crystal fibre. , 2013, , .                                                 |     | 0         |
| 103 | M-CARS and EFISHG study of the influence of a static electric field on a non-polar molecule. , 2016, , .                                      |     | Ο         |
| 104 | Nanosecond coherent anti-Stokes Raman scattering for particle size characterization. Proceedings of SPIE, 2016, , .                           | 0.8 | 0         |
| 105 | Measurement of the Third Order Nonlinear Susceptibility of a Paratellurite Single Crystal using Multiplex CARS. , 2019, , .                   |     | Ο         |
| 106 | Versatile supercontinuum generation by using χ(2) and χ(3) nonlinearities in PPLN crystal for direct<br>CARS measurement. , 2021, , .         |     | 0         |
| 107 | Kerr beam self-cleaning and supercontinuum generation in a graded-index few-mode photonic crystal fiber. , 2021, , .                          |     | 0         |
| 108 | Adaptive spectral selection of a super continuum source using optical MEMS for biomedical diagnosis. , 2008, , .                              |     | 0         |

| #   | Article                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Experimental and numerical investigation of the impact of pulse duration on supercontinuum generation in a photonic crystal fiber. , 2010, , . |     | О         |
| 110 | Lasers multicolores pour le diagnostic cellulaire. Photoniques, 2012, , 50-54.                                                                 | 0.1 | 0         |
| 111 | Design of an Optimized Distal Optic for Non Linear Endomicroscopy. , 2015, , .                                                                 |     | Ο         |
| 112 | CARS molecular fingerprinting using a sub-nanosecond supercontinuum light source. , 2018, , .                                                  |     | 0         |
| 113 | Label-free imaging of acanthamoeba using multimodal nonlinear optical microscopy. , 2018, , .                                                  |     | Ο         |
| 114 | χ(3) nonlinear fast imaging and its relative quantification after thermal poling of niobium<br>borophospate glass. , 2020, , .                 |     | 0         |
| 115 | Generation of kilovolt, picosecond electric pulses by coherent combining in optoelectronic system. ,<br>2020, , .                              |     | 0         |