
Munehiro Kitada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4241132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resveratrol Improves Oxidative Stress and Protects Against Diabetic Nephropathy Through Normalization of Mn-SOD Dysfunction in AMPK/SIRT1-Independent Pathway. Diabetes, 2011, 60, 634-643.	0.6	300
2	Linagliptin-Mediated DPP-4 Inhibition Ameliorates Kidney Fibrosis in Streptozotocin-Induced Diabetic Mice by Inhibiting Endothelial-to-Mesenchymal Transition in a Therapeutic Regimen. Diabetes, 2014, 63, 2120-2131.	0.6	298
3	Effects of Antioxidants in Diabetes-Induced Oxidative Stress in the Glomeruli of Diabetic Rats. Journal of the American Society of Nephrology: JASN, 2003, 14, S250-S253.	6.1	240
4	SIRT1 in Type 2 Diabetes: Mechanisms and Therapeutic Potential. Diabetes and Metabolism Journal, 2013, 37, 315.	4.7	208
5	The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging, 2016, 8, 2290-2307.	3.1	201
6	Translocation of Glomerular p47phox and p67phox by Protein Kinase C-β Activation Is Required for Oxidative Stress in Diabetic Nephropathy. Diabetes, 2003, 52, 2603-2614.	0.6	199
7	Rodent models of diabetic nephropathy: their utility and limitations. International Journal of Nephrology and Renovascular Disease, 2016, Volume 9, 279-290.	1.8	190
8	Dietary Restriction Ameliorates Diabetic Nephropathy through Anti-Inflammatory Effects and Regulation of the Autophagy via Restoration of Sirt1 in Diabetic Wistar Fatty (<i>fa/fa</i>) Rats: A Model of Type 2 Diabetes. Experimental Diabetes Research, 2011, 2011, 1-11.	3.8	186
9	Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clinical Science, 2013, 124, 153-164.	4.3	182
10	Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. Frontiers in Endocrinology, 2019, 10, 187.	3.5	170
11	Autophagy in metabolic disease and ageing. Nature Reviews Endocrinology, 2021, 17, 647-661.	9.6	159
12	Molecular mechanisms of diabetic vascular complications. Journal of Diabetes Investigation, 2010, 1, 77-89.	2.4	140
13	Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight, 2020, 5, .	5.0	131
14	Interactions of DPP-4 and integrin \hat{l}^21 influences endothelial-to-mesenchymal transition. Kidney International, 2015, 88, 479-489.	5.2	127
15	Renal Protective Effects of Resveratrol. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-7.	4.0	123
16	SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis. Cell Death and Disease, 2018, 9, 997.	6.3	117
17	The impact of dietary protein intake on longevity and metabolic health. EBioMedicine, 2019, 43, 632-640.	6.1	97
18	Autophagy as a Therapeutic Target in Diabetic Nephropathy. Experimental Diabetes Research, 2012, 2012, 1-12.	3.8	92

MUNEHIRO KITADA

#	Article	IF	CITATIONS
19	SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochemical and Biophysical Research Communications, 2012, 427, 191-196.	2.1	90
20	lpragliflozin improves mitochondrial abnormalities in renal tubules induced by a highâ€fat diet. Journal of Diabetes Investigation, 2018, 9, 1025-1032.	2.4	88
21	Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Research, 2019, 79, 735-746.	0.9	86
22	Regulating Autophagy as a Therapeutic Target for Diabetic Nephropathy. Current Diabetes Reports, 2017, 17, 53.	4.2	79
23	A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia, 2016, 59, 1307-1317.	6.3	75
24	Sirtuins as Possible Drug Targets in Type 2 Diabetes. Current Drug Targets, 2013, 14, 622-636.	2.1	74
25	N-acetyl-seryl-aspartyl-lysyl-proline Inhibits Diabetes-Associated Kidney Fibrosis and Endothelial-Mesenchymal Transition. BioMed Research International, 2014, 2014, 1-12.	1.9	73
26	Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy, 2020, 16, 1905-1914.	9.1	65
27	FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway. Cell Death and Disease, 2017, 8, e2965-e2965.	6.3	61
28	CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD+/NADH ratio and Sirt3 activity in renal tubular cells in diabetic rats. Aging, 2020, 12, 11325-11336.	3.1	61
29	Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Archives of Pharmacal Research, 2013, 36, 230-236.	6.3	60
30	Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis. Scientific Reports, 2016, 6, 29884.	3.3	60
31	Dapagliflozin Restores Impaired Autophagy and Suppresses Inflammation in High Glucose-Treated HK-2 Cells. Cells, 2021, 10, 1457.	4.1	60
32	Endothelial FGFR1 (Fibroblast Growth Factor Receptor 1) Deficiency Contributes Differential Fibrogenic Effects in Kidney and Heart of Diabetic Mice. Hypertension, 2020, 76, 1935-1944.	2.7	55
33	Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Frontiers in Physiology, 2020, 11, 755.	2.8	52
34	Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys. IScience, 2021, 24, 102390.	4.1	50
35	Clinical therapeutic strategies for early stage of diabetic kidney disease. World Journal of Diabetes, 2014, 5, 342.	3.5	42
36	Renal mitochondrial oxidative stress is enhanced by the reduction of Sirt3 activity, in Zucker diabetic fatty rats. Redox Report, 2018, 23, 153-159.	4.5	42

Munehiro Kitada

#	Article	IF	CITATIONS
37	Calorie restriction in overweight males ameliorates obesity-related metabolic alterations and cellular adaptations through anti-aging effects, possibly including AMPK and SIRT1 activation. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4820-4827.	2.4	41
38	Effect of Methionine Restriction on Aging: Its Relationship to Oxidative Stress. Biomedicines, 2021, 9, 130.	3.2	39
39	The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans. Nutrients, 2017, 9, 1142.	4.1	38
40	A Low-Protein Diet for Diabetic Kidney Disease: Its Effect and Molecular Mechanism, an Approach from Animal Studies. Nutrients, 2018, 10, 544.	4.1	38
41	Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen. BioMed Research International, 2016, 2016, 1-11.	1.9	36
42	Deficiency in catechol-o-methyltransferase is linked to a disruption of glucose homeostasis in mice. Scientific Reports, 2017, 7, 7927.	3.3	30
43	Ketogenic essential amino acids replacement diet ameliorated hepatosteatosis with altering autophagy-associated molecules. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1605-1612.	3.8	28
44	Role of sirtuins in kidney disease. Current Opinion in Nephrology and Hypertension, 2014, 23, 75-79.	2.0	28
45	Sirtuins and Renal Oxidative Stress. Antioxidants, 2021, 10, 1198.	5.1	27
46	N-acetyl-seryl-aspartyl-lysyl-proline: a valuable endogenous anti-fibrotic peptide for combating kidney fibrosis in diabetes. Frontiers in Pharmacology, 2014, 5, 70.	3.5	26
47	Relationship Between Autophagy and Metabolic Syndrome Characteristics in the Pathogenesis of Atherosclerosis. Frontiers in Cell and Developmental Biology, 2021, 9, 641852.	3.7	26
48	Dipeptidyl peptidase-4 plays a pathogenic role in BSA-induced kidney injury in diabetic mice. Scientific Reports, 2019, 9, 7519.	3.3	25
49	A low-protein diet exerts a beneficial effect on diabetic status and prevents diabetic nephropathy in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Nutrition and Metabolism, 2018, 15, 20.	3.0	23
50	Metformin Mitigates DPP-4 Inhibitor-Induced Breast Cancer Metastasis via Suppression of mTOR Signaling. Molecular Cancer Research, 2021, 19, 61-73.	3.4	22
51	Mechanism of Activation of Mechanistic Target of Rapamycin Complex 1 by Methionine. Frontiers in Cell and Developmental Biology, 2020, 8, 715.	3.7	21
52	Stromal cell-derived factor 1 (SDF1) attenuates platelet-derived growth factor-B (PDGF-B)-induced vascular remodeling for adipose tissue expansion in obesity. Angiogenesis, 2020, 23, 667-684.	7.2	19
53	Pro-inflammatory macrophages coupled with glycolysis remodel adipose vasculature by producing platelet-derived growth factor-B in obesity. Scientific Reports, 2020, 10, 670.	3.3	18
54	Deficiency in Dipeptidyl Peptidase-4 Promotes Chemoresistance Through the CXCL12/CXCR4/mTOR/TGFβ Signaling Pathway in Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 805.	4.1	18

Munehiro Kitada

#	Article	IF	CITATIONS
55	Methionine abrogates the renoprotective effect of a low-protein diet against diabetic kidney disease in obese rats with type 2 diabetes. Aging, 2020, 12, 4489-4505.	3.1	18
56	A ketogenic amino acid rich diet benefits mitochondrial homeostasis by altering the AKT/4EBP1 and autophagy signaling pathways in the gastrocnemius and soleus. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1547-1555.	2.4	17
57	The impact of mitochondrial quality control by Sirtuins on the treatment of type 2 diabetes and diabetic kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165756.	3.8	15
58	Effects of SGLT2 Inhibitors on Atherosclerosis: Lessons from Cardiovascular Clinical Outcomes in Type 2 Diabetic Patients and Basic Researches. Journal of Clinical Medicine, 2022, 11, 137.	2.4	15
59	FGFR1 is essential for N-acetyl-seryl-aspartyl-lysyl-proline regulation of mitochondrial dynamics by upregulating microRNA let-7b-5p. Biochemical and Biophysical Research Communications, 2018, 495, 2214-2220.	2.1	13
60	Significance of SGLT2 inhibitors: lessons from renal clinical outcomes in patients with type 2 diabetes and basic researches. Diabetology International, 2020, 11, 245-251.	1.4	13
61	Comparative Effects of Direct Renin Inhibitor and Angiotensin Receptor Blocker on Albuminuria in Hypertensive Patients with Type 2 Diabetes. A Randomized Controlled Trial. PLoS ONE, 2016, 11, e0164936.	2.5	11
62	NAD+ Homeostasis in Diabetic Kidney Disease. Frontiers in Medicine, 2021, 8, 703076.	2.6	10
63	The Use of Calorie Restriction Mimetics to Study Aging. Methods in Molecular Biology, 2013, 1048, 95-107.	0.9	8
64	Supplementation with Red Wine Extract Increases Insulin Sensitivity and Peripheral Blood Mononuclear Sirt1 Expression in Nondiabetic Humans. Nutrients, 2020, 12, 3108.	4.1	8
65	Exercise Ameliorates Diabetic Kidney Disease in Type 2 Diabetic Fatty Rats. Antioxidants, 2021, 10, 1754.	5.1	8
66	Anagliptin ameliorates albuminuria and urinary liver-type fatty acid-binding protein excretion in patients with type 2 diabetes with nephropathy in a glucose-lowering-independent manner. BMJ Open Diabetes Research and Care, 2017, 5, e000391.	2.8	7
67	Effect of switching to teneligliptin from other dipeptidyl peptidaseâ€4 inhibitors on glucose control and renoprotection in typeA2 diabetes patients with diabetic kidney disease. Journal of Diabetes Investigation, 2019, 10, 706-713.	2.4	7
68	βklotho is essential for the antiâ€endothelial mesenchymal transition effects of <i>N</i> â€acetylâ€serylâ€aspartylâ€lysylâ€proline. FEBS Open Bio, 2019, 9, 1029-1038.	2.3	7
69	Medical nutrition therapy and dietary counseling for patients with diabetes-energy, carbohydrates, protein intake and dietary counseling. Diabetology International, 2020, 11, 224-239.	1.4	7
70	Interventions against nutrient-sensing pathways represent an emerging new therapeutic approach for diabetic nephropathy. Clinical and Experimental Nephrology, 2014, 18, 210-213.	1.6	6
71	Sodium–glucose cotransporterÂ2 inhibitors in typeÂ2 diabetes patients with renal function impairment slow the annual renal function decline, in a real clinical practice. Journal of Diabetes Investigation, 2021, 12, 1577-1585.	2.4	6
72	Cyclic and intermittent very lowâ€protein diet can have beneficial effects against advanced diabetic nephropathy in Wistar fatty (<i>fa/fa</i>) rats, an animal model of type 2 diabetes and obesity. Nephrology, 2017, 22, 1030-1034.	1.6	5

#	Article	IF	CITATIONS
73	N-Acetyl-seryl-aspartyl-lysyl-proline is a potential biomarker of renal function in normoalbuminuric diabetic patients with eGFR ≥ 30Âml/min/1.73Âm2. Clinical and Experimental Nephrology, 2019, 23,	1664-101	2 ⁵ .
74	CDâ€l <i>^{db/db}</i> mice: A novel type 2 diabetic mouse model with progressive kidney fibrosis. Journal of Diabetes Investigation, 2020, 11, 1470-1481.	2.4	5
75	Case report of superior mesenteric artery syndrome that developed in a lean typeÂ2 diabetes patient and was associated with rapid body weight loss after sodium–glucose cotransporterÂ2 inhibitor administration. Journal of Diabetes Investigation, 2020, 11, 1359-1362.	2.4	3
76	Proposal of classification of "chronic kidney disease (CKD) with diabetes―in clinical setting. Diabetology International, 2019, 10, 180-182.	1.4	1
77	Adenosine/A1R signaling pathway did not play dominant roles on the influence of SGLT2 inhibitor in the kidney of BSAâ€overloaded STZâ€induced diabetic mice. Journal of Diabetes Investigation, 2022, , .	2.4	1
78	Rationale, Design and Baseline Characteristics of the Effect of Canagliflozin in Type 2 Diabetic Patients with Microalbuminuria in Japanese Population (<scp>CANPIONE</scp>) study. Diabetes, Obesity and Metabolism, 2022, , .	4.4	1