Niels H Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4240727/publications.pdf

Version: 2024-02-01

516710 477307 43 923 16 29 citations g-index h-index papers 43 43 43 922 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimizing the fold stability of the circularly permuted Trp age motif. Biopolymers, 2019, 110, e23327.	2.4	О
2	Reversing the typical pH stability profile of the Trp age. Biopolymers, 2019, 110, e23260.	2.4	4
3	The adipokinetic hormones and their cognate receptor from the desert locust, <i>Schistocerca gregaria</i> : solution structure of endogenous peptides and models of their binding to the receptor. PeerJ, 2019, 7, e7514.	2.0	14
4	Interaction of the red pigment-concentrating hormone of the crustacean Daphnia pulex, with its cognate receptor, Dappu-RPCHR: A nuclear magnetic resonance and modeling study. International Journal of Biological Macromolecules, 2018, 106, 969-978.	7.5	16
5	Computational and Experimental Evaluation of Designed \hat{l}^2 -Cap Hairpins Using Molecular Simulations and Kinetic Network Models. Journal of Chemical Information and Modeling, 2017, 57, 1609-1620.	5.4	9
6	A pH Switch for β‧heet Protein Folding. Angewandte Chemie - International Edition, 2017, 56, 7074-7077.	13.8	9
7	A pH Switch for βâ€Sheet Protein Folding. Angewandte Chemie, 2017, 129, 7180-7183.	2.0	O
8	Inhibition of Human Amylin Amyloidogenesis by Human Amylin-Fragment Peptides: Exploring the Effects of Serine Residues and Oligomerization upon Inhibitory Potency. Biochemistry, 2017, 56, 5373-5379.	2.5	10
9	Biological consequences of improving the structural stability of hairpins that have antimicrobial activity. Journal of Peptide Science, 2017, 23, 899-906.	1.4	2
10	Optimization of a βâ€sheetâ€cap for long loop closure. Biopolymers, 2017, 107, e22995.	2.4	8
11	Data for the homology modelling of the red pigment-concentrating hormone receptor (Dappu-RPCHR) of the crustacean Daphnia pulex, and docking of its cognate agonist (Dappu-RPCH). Data in Brief, 2017, 15, 941-947.	1.0	2
12	Peptide Inhibitors of the amyloidogenesis of <scp>IAPP</scp> : verification of the hairpinâ€binding geometry hypothesis. FEBS Letters, 2016, 590, 2575-2583.	2.8	26
13	Aryl–aryl interactions in designed peptide folds: Spectroscopic characteristics and optimal placement for structure stabilization. Biopolymers, 2016, 105, 337-356.	2.4	17
14	Nascent Hairpins in Proteins: Identifying Turn Loci and Quantitating Turn Contributions to Hairpin Stability. Biochemistry, 2016, 55, 5537-5553.	2.5	17
15	Hairpin structure stability plays a role in the activity of two antimicrobial peptides. FEBS Letters, 2016, 590, 4480-4488.	2.8	13
16	A Structuring Repeat for Peptide Design: Long Beta Ribbons. ChemBioChem, 2016, 17, 224-227.	2.6	2
17	Modulating the Amyloidogenesis of ?-Synuclein. Current Neuropharmacology, 2016, 14, 226-237.	2.9	7
18	Disulfide-Mediated \hat{l}^2 -Strand Dimers: Hyperstable \hat{l}^2 -Sheets Lacking Tertiary Interactions and Turns. Journal of the American Chemical Society, 2015, 137, 5363-5371.	13.7	25

#	Article	IF	Citations
19	An improved capping unit for stabilizing the ends of associated βâ€strands. FEBS Letters, 2014, 588, 4749-4753.	2.8	13
20	Circular Permutation of a WW Domain: Folding Still Occurs after Excising the Turn of the Folding-Nucleating Hairpin. Journal of the American Chemical Society, 2014, 136, 741-749.	13.7	16
21	Circular permutation of the Trp-cage: fold rescue upon addition of a hydrophobic staple. RSC Advances, 2013, 3, 19824.	3.6	11
22	Minimization and Optimization of Designed \hat{l}^2 -Hairpin Folds. Journal of the American Chemical Society, 2006, 128, 6101-6110.	13.7	111
23	Dynamics of the Primary Processes of Protein Folding:Â Helix Nucleation. Journal of Physical Chemistry B, 2002, 106, 487-494.	2.6	82
24	Medium-Dependence of the secondary structure of exendin-4 and glucagon-like-peptide-1. Bioorganic and Medicinal Chemistry, 2002, 10, 79-85.	3.0	64
25	Determinants of miniprotein stability: can anything replace a buried H-bonded Trp sidechain?. International Journal of Peptide Research and Therapeutics, 2001, 8, 221-226.	0.1	3
26	Determinants of miniprotein stability: can anything replace a buried H-bonded Trp sidechain?. International Journal of Peptide Research and Therapeutics, 2001, 8, 221-226.	0.1	16
27	Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations. Protein Science, 1997, 6, 1920-1936.	7.6	53
28	Efforts toward deriving the CD spectrum of a 310helix in aqueous medium. FEBS Letters, 1996, 399, 47-52.	2.8	77
29	Conformational Preferences and Dynamics of 4-Isoxazolyl-1,4-dihydropyridine Calcium Channel Antagonists as Determined by Variable-Temperature NMR and NOE Experiments. Magnetic Resonance in Chemistry, 1996, 34, 495-504.	1.9	3
30	Does the solid-state structure of endothelin-1 provide insights concerning the solution-state conformational equilibrium?. FEBS Letters, 1994, 355, 140-146.	2.8	7
31	The Endothelin C-Terminal Signal Fragment: Determinants of the Conformational Equilibrium in situ and Detached. Protein and Peptide Letters, 1994, 1, 215-222.	0.9	4
32	Solution conformation of a cyclic pentapeptide endothelin antagonist Comparison of structures obtained from constrained dynamics and conformational search. FEBS Letters, 1992, 299, 255-261.	2.8	39
33	Quantitative small molecule NOESY. A practical guide for derivation of cross-relaxation rates and internuclear distances. Magnetic Resonance in Chemistry, 1989, 27, 515-528.	1.9	52
34	Small molecule conformation in the receptor-bound state by the two-dimensional spin exchange experiment. Magnetic Resonance in Chemistry, 1987, 25, 1025-1034.	1.9	32
35	Mass spectrometric fragmentation patterns for the Syn and Anti isomers of PGE2 and PGD2-methyloxime methyl esters and their analogs. Biological Mass Spectrometry, 1985, 12, 303-308.	0.5	9
36	Synthesis of a highly tritiated photoaffinity labelled pheromone analog for the moth antheraea polyphemus. Journal of Labelled Compounds and Radiopharmaceuticals, 1984, 21, 593-601.	1.0	24

#	Article	IF	CITATIONS
37	Acetyl Cation Facilitated Cyclizations of Olefinic Aldehydes. III.1Factors Determining Regiochemistry in Acroleins. Synthetic Communications, 1978, 8, 437-448.	2.1	8
38	Cyclopentane Formation via the Ene Reaction of Olefinic Aldehydes. Synthetic Communications, 1978, 8, 449-461.	2.1	19
39	An Alternative Prostaglandin Analog Synthesis Strategy: $<$ sup $>$ 1 $<$ /sup $>$ An Initial $\hat{1}\pm$ -Ylation Sequence for Bis-Unsaturated Prostaglandins. Synthetic Communications, 1976, 6, 33-38.	2.1	9
40	Reduction of the \hat{l} " < sup>13 < l sup>-15-Keto Grouping of Prostaglandin Intermediates. Synthetic Communications, 1975, 5, 451-456.	2.1	14
41	Methods for Interconverting Aldehydes and Acetals. Synthetic Communications, 1973, 3, 125-128.	2.1	36
42	A New Total Synthesis of Bulnesol. Synthetic Communications, 1973, 3, 115-123.	2.1	23
43	Synthetic Methods Based on Sulfonimides I. S _N 2 Displacement of Ditosylamine. Synthetic Communications, 1972, 2, 297-302.	2.1	17