
Koichi Ichimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4239741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of novel SSX1 fusions in synovial sarcoma. Modern Pathology, 2022, 35, 228-239.	5.5	15
2	12p gain is predominantly observed in non-germinomatous germ cell tumors and identifies an unfavorable subgroup of central nervous system germ cell tumors. Neuro-Oncology, 2022, 24, 834-846.	1.2	16
3	The clinical characteristics and outcomes of incidentally discovered glioblastoma. Journal of Neuro-Oncology, 2022, 156, 551-557.	2.9	4
4	Transcriptome and methylome analysis of CNS germ cell tumor finds its cell-of-origin in embryogenesis and reveals shared similarities with testicular counterparts. Neuro-Oncology, 2022, 24, 1246-1258.	1.2	14
5	Softâ€ŧissue sarcoma with <scp><i>MN1â€BEND2</i></scp> fusion: A case report and comparison with astroblastoma. Genes Chromosomes and Cancer, 2022, 61, 427-431.	2.8	3
6	Prognostic significance of TERT promoter mutations in adult-type diffuse gliomas. Brain Tumor Pathology, 2022, 39, 121-129.	1.7	7
7	Roles of Tumor Markers in Central Nervous System Germ Cell Tumors Revisited with Histopathology-Proven Cases in a Large International Cohort. Cancers, 2022, 14, 979.	3.7	9
8	HSP90 Inhibition Overcomes Resistance to Molecular Targeted Therapy in <i>BRAFV600E</i> -mutant High-grade Glioma. Clinical Cancer Research, 2022, 28, 2425-2439.	7.0	17
9	MGMT gene promoter methylation by pyrosequencing method correlates volumetric response and neurological status in IDH wild-type glioblastomas. Journal of Neuro-Oncology, 2022, 157, 561-571.	2.9	5
10	Co-expression of ERG and CD31 in a subset of CIC-rearranged sarcoma: a potential diagnostic pitfall. Modern Pathology, 2022, 35, 1439-1448.	5.5	10
11	Assessment of therapeutic outcome and role of reirradiation in patients with radiation-induced glioma. Radiation Oncology, 2022, 17, 85.	2.7	2
12	Clinical Application of Comprehensive Genomic Profiling Tests for Diffuse Gliomas. Cancers, 2022, 14, 2454.	3.7	3
13	Diffusely infiltrating glioma with CREBBP–BCORL1 fusion showing overexpression of not only BCORL1 but BCOR: A case report. Brain Tumor Pathology, 2022, 39, 171-178.	1.7	5
14	Utility of methylthioadenosine phosphorylase immunohistochemical deficiency as a surrogate for CDKN2A homozygous deletion in the assessment of adult-type infiltrating astrocytoma. Modern Pathology, 2021, 34, 688-700.	5.5	25
15	Ependymoma with C11orf95-MAML2 fusion: presenting with granular cell and ganglion cell features. Brain Tumor Pathology, 2021, 38, 64-70.	1.7	11
16	So-called bifocal tumors with diabetes insipidus and negative tumor markers: are they all germinoma?. Neuro-Oncology, 2021, 23, 295-303.	1.2	24
17	IDH-Mutant Astrocytoma With Chromosome 19q13 Deletion Manifesting as an Oligodendroglioma-Like Morphology. Journal of Neuropathology and Experimental Neurology, 2021, 80, 247-253.	1.7	3
18	Comparison on epidemiology, tumor location, histology, and prognosis of intracranial germ cell tumors between Mayo Clinic and Japanese consortium cohorts. Journal of Neurosurgery, 2021, 134, 446-456.	1.6	21

KOICHI ICHIMURA

#	Article	IF	CITATIONS
19	Ependymomaâ€like tumor with mesenchymal differentiation harboring <i>C11orf95</i> â€ <i>NCOA1</i> / <i>2</i> or â€ <i>RELA</i> fusion: A hitherto unclassified tumor related to ependymoma. Brain Pathology, 2021, 31, e12943.	4.1	16
20	C11orf95-RELA fusion drives aberrant gene expression through the unique epigenetic regulation for ependymoma formation. Acta Neuropathologica Communications, 2021, 9, 36.	5.2	14
21	Fine-Tuning Approach for Segmentation of Gliomas in Brain Magnetic Resonance Images with a Machine Learning Method to Normalize Image Differences among Facilities. Cancers, 2021, 13, 1415.	3.7	28
22	A New Era of Neuro-Oncology Research Pioneered by Multi-Omics Analysis and Machine Learning. Biomolecules, 2021, 11, 565.	4.0	10
23	Outcomes of salvage fractionated re-irradiation combined with bevacizumab for recurrent high-grade gliomas that progressed after bevacizumab treatment**. Japanese Journal of Clinical Oncology, 2021, 51, 1028-1035.	1.3	3
24	The ALK inhibitors, alectinib and ceritinib, induce ALKâ€independent and STAT3â€dependent glioblastoma cell death. Cancer Science, 2021, 112, 2442-2453.	3.9	8
25	TERT promoter mutation status is necessary and sufficient to diagnose IDH-wildtype diffuse astrocytic glioma with molecular features of glioblastoma. Acta Neuropathologica, 2021, 142, 323-338.	7.7	58
26	Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals. Cancers, 2021, 13, 3611.	3.7	11
27	MGMT testing always worth an emotion. Neuro-Oncology, 2021, 23, 1417-1418.	1.2	2
28	Histopathology and prognosis of germ cell tumors metastatic to brain: cohort study. Journal of Neuro-Oncology, 2021, 154, 121-130.	2.9	3
29	Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathologica, 2021, 142, 827-839.	7.7	33
30	Lomustine and nimustine exert efficient antitumor effects against glioblastoma models with acquired temozolomide resistance. Cancer Science, 2021, 112, 4736-4747.	3.9	15
31	Liquid biopsy of cerebrospinal fluid for <i>MYD88</i> L265P mutation is useful for diagnosis of central nervous system lymphoma. Cancer Science, 2021, 112, 4702-4710.	3.9	16
32	Low tumor cell content predicts favorable prognosis in germinoma patients. Neuro-Oncology Advances, 2021, 3, vdab110.	0.7	8
33	Tissue 2-Hydroxyglutarate and Preoperative Seizures in Patients With Diffuse Gliomas. Neurology, 2021, 97, e2114-e2123.	1.1	3
34	Eribulin prolongs survival in an orthotopic xenograft mouse model of malignant meningioma. Cancer Science, 2021, 113, 697.	3.9	4
35	Phenotypic characterization with somatic genome editing and gene transfer reveals the diverse oncogenicity of ependymoma fusion genes. Acta Neuropathologica Communications, 2020, 8, 203.	5.2	8
36	TERT promoter mutation confers favorable prognosis regardless of 1p/19q status in adult diffuse gliomas with IDH1/2 mutations. Acta Neuropathologica Communications, 2020, 8, 201.	5.2	27

#	Article	IF	CITATIONS
37	Highly sensitive detection of TERT promoter mutations in recurrent glioblastomas using digital PCR. Brain Tumor Pathology, 2020, 37, 154-158.	1.7	7
38	Enhanced Malignant Phenotypes of Glioblastoma Cells Surviving NPe6-Mediated Photodynamic Therapy are Regulated via ERK1/2 Activation. Cancers, 2020, 12, 3641.	3.7	10
39	Histological and genetic analysis of anaplastic pleomorphic xanthoastrocytoma suspected of malignant progression over a 12â€year clinical course. Pathology International, 2019, 69, 608-613.	1.3	5
40	Integrated clinical, histopathological, and molecular data analysis of 190 central nervous system germ cell tumors from the iGCT Consortium. Neuro-Oncology, 2019, 21, 1565-1577.	1.2	74
41	Presacral malignant teratoid neoplasm in association with pathogenic DICER1 variation. Modern Pathology, 2019, 32, 1744-1750.	5.5	22
42	Absence of H3F3A mutation in a subset of malignant giant cell tumor of bone. Modern Pathology, 2019, 32, 1751-1761.	5.5	35
43	Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts. Cancer Science, 2019, 110, 2247-2257.	3.9	42
44	A long-term survivor of pediatric midline glioma with H3F3A K27M and BRAF V600E double mutations. Brain Tumor Pathology, 2019, 36, 162-168.	1.7	10
45	Survival benefits of hypofractionated radiotherapy combined with temozolomide or temozolomide plus bevacizumab in elderly patients with glioblastoma aged ≥ 75 years. Radiation Oncology, 2	01 3 ,714,2	200.19
46	Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nature Communications, 2019, 10, 4343.	12.8	200
47	Signal transduction pathways and resistance to targeted therapies in glioma. Seminars in Cancer Biology, 2019, 58, 118-129.	9.6	40
48	High-grade glioneuronal tumor with an ARHGEF2–NTRK1 fusion gene. Brain Tumor Pathology, 2019, 36, 121-128.	1.7	18
49	TERT promoter mutation as a diagnostic marker for diffuse gliomas. Neuro-Oncology, 2019, 21, 417-418.	1.2	6
50	PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors. Clinical Cancer Research, 2019, 25, 4375-4387.	7.0	26
51	Review of ependymomas: assessment of consensus in pathological diagnosis and correlations with genetic profiles and outcome. Brain Tumor Pathology, 2019, 36, 92-101.	1.7	11
52	Protein Phosphatases—A Touchy Enemy in the Battle Against Glioblastomas: A Review. Cancers, 2019, 11, 241.	3.7	15
53	Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network. Scientific Reports, 2019, 9, 20311.	3.3	45
54	Frequent false-negative immunohistochemical staining with IDH1 (R132H)-specific H09 antibody on frozen section control slides: a potential pitfall in glioma diagnosis. Histopathology, 2019, 74, 350-354.	2.9	4

#	Article	IF	CITATIONS
55	Genomeâ€wide <scp>DNA</scp> methylation profiling shows molecular heterogeneity of anaplastic pleomorphic xanthoastrocytoma. Cancer Science, 2019, 110, 828-832.	3.9	5
56	Molecular Diagnosis in WHO Classification of Tumours of the Central Nervous System 2016 : A Domestic Survey and Perspectives. Japanese Journal of Neurosurgery, 2019, 28, 674-685.	0.0	0
57	Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft. Biochemical and Biophysical Research Communications. 2018. 495. 1292-1299.	2.1	18
58	TERT promoter hotspot mutations in breast cancer. Breast Cancer, 2018, 25, 292-296.	2.9	29
59	Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors. Acta Neuropathologica Communications, 2018, 6, 134.	5.2	74
60	Concomitant administration of radiation with eribulin improves the survival of mice harboring intracerebral glioblastoma. Cancer Science, 2018, 109, 2275-2285.	3.9	14
61	Radiological characteristics based on isocitrate dehydrogenase mutations and 1p/19q codeletion in grade II and III gliomas. Brain Tumor Pathology, 2018, 35, 148-158.	1.7	22
62	Elevated TERT Expression in TERT-Wildtype Adult Diffuse Gliomas: Histological Evaluation with a Novel TERT-Specific Antibody. BioMed Research International, 2018, 2018, 1-12.	1.9	15
63	Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas. Scientific Reports, 2018, 8, 11773.	3.3	88
64	Involvement of Intracellular Cholesterol in Temozolomide-Induced Glioblastoma Cell Death. Neurologia Medico-Chirurgica, 2018, 58, 296-302.	2.2	6
65	<i>IDH</i> â€mutated astrocytomas with 19qâ€loss constitute a subgroup that confers better prognosis. Cancer Science, 2018, 109, 2327-2335.	3.9	20
66	Genome-wide DNA methylation profiling identifies primary central nervous system lymphoma as a distinct entity different from systemic diffuse large B-cell lymphoma. Acta Neuropathologica, 2017, 133, 321-324.	7.7	18
67	Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas. Acta Neuropathologica, 2017, 133, 445-462.	7.7	64
68	Distinct molecular profile of diffuse cerebellar gliomas. Acta Neuropathologica, 2017, 134, 941-956.	7.7	40
69	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	7.7	271
70	How to understand the Results of Basic Glioma Genome Sequence Data. Japanese Journal of Neurosurgery, 2017, 26, 806-816.	0.0	2
71	A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathologica Communications, 2016, 4, 79.	5.2	189
72	Genomic characterization of primary central nervous system lymphoma. Acta Neuropathologica, 2016, 131, 865-875.	7.7	138

#	Article	IF	CITATIONS
73	Recurrent neomorphic mutations of MTOR in central nervous system and testicular germ cell tumors may be targeted for therapy. Acta Neuropathologica, 2016, 131, 889-901.	7.7	70
74	Glioblastomas with <i>IDH1/2</i> mutations have a short clinical history and have a favorable clinical outcome. Japanese Journal of Clinical Oncology, 2016, 46, 31-39.	1.3	15
75	Human chorionic gonadotropin is expressed virtually in all intracranial germ cell tumors. Journal of Neuro-Oncology, 2015, 124, 23-32.	2.9	26
76	Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. Acta Neuropathologica, 2015, 130, 419-434.	7.7	74
77	Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathologica, 2015, 129, 789-808.	7.7	45
78	IDH1/2 mutation detection in gliomas. Brain Tumor Pathology, 2015, 32, 79-89.	1.7	44
79	Revisiting <scp><i>TP</i></scp> <i>53</i> Mutations and Immunohistochemistry—A Comparative Study in 157 Diffuse Gliomas. Brain Pathology, 2015, 25, 256-265.	4.1	120
80	Development of a robust and sensitive pyrosequencing assay for the detection of IDH1/2 mutations in gliomas. Brain Tumor Pathology, 2015, 32, 22-30.	1.7	65
81	Prognostic and predictive markers in recurrent high grade glioma; results from the BR12 randomised trial. Acta Neuropathologica Communications, 2014, 2, 68.	5.2	29
82	Mutually exclusive mutations of KIT and RAS are associated with KIT mRNA expression and chromosomal instability in primary intracranial pure germinomas. Acta Neuropathologica, 2014, 127, 911-925.	7.7	82
83	Intracranial germinomas in a father and his son. Child's Nervous System, 2014, 30, 2143-2146.	1.1	6
84	TERT promoter mutations rather than methylation are the main mechanism for TERT upregulation in adult gliomas. Acta Neuropathologica, 2013, 126, 939-941.	7.7	62
85	Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathologica, 2013, 126, 267-276.	7.7	315
86	Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathologica, 2013, 126, 291-301.	7.7	84
87	A case of more than 20 years survival with glioblastoma, and development of cavernous angioma as a delayed complication of radiotherapy. Neuropathology, 2013, 33, 576-581.	1.2	20
88	Molecular markers in pediatric neuro-oncology. Neuro-Oncology, 2012, 14, iv90-iv99.	1.2	30
89	IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade Il gliomas concomitantly treated with radiation therapy. International Journal of Oncology, 2012, 41, 1325-1336.	3.3	67
90	Histopathological malignant progression of grade II and III gliomas correlated with IDH1/2 mutation status. Brain Tumor Pathology, 2012, 29, 183-191.	1.7	9

#	Article	IF	CITATIONS
91	Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482, 226-231.	27.8	2,129
92	Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathology, 2012, 29, 131-139.	1.7	115
93	<i>MGMT</i> CpG island is invariably methylated in adult astrocytic and oligodendroglial tumors with <i>IDH1</i> or <i>IDH2</i> mutations. International Journal of Cancer, 2012, 131, 1104-1113.	5.1	78
94	A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathologica, 2011, 121, 651-661.	7.7	116
95	Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathologica, 2011, 121, 753-761.	7.7	46
96	IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro-Oncology, 2009, 11, 341-347.	1.2	504
97	Novel mechanisms of gene disruption at the medulloblastoma isodicentric 17p11 breakpoint. Genes Chromosomes and Cancer, 2009, 48, 121-131.	2.8	9
98	An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. Journal of Neuroscience Methods, 2009, 176, 192-199.	2.5	143
99	Tandem Duplication Producing a Novel Oncogenic <i>BRAF</i> Fusion Gene Defines the Majority of Pilocytic Astrocytomas. Cancer Research, 2008, 68, 8673-8677.	0.9	786
100	Genomic Analysis of Pilocytic Astrocytomas at 0.97 Mb Resolution Shows an Increasing Tendency Toward Chromosomal Copy Number Change With Age. Journal of Neuropathology and Experimental Neurology, 2006, 65, 1049-1058.	1.7	72
101	High-Resolution Array-Based Comparative Genomic Hybridization of Medulloblastomas and Supratentorial Primitive Neuroectodermal Tumors. Journal of Neuropathology and Experimental Neurology, 2006, 65, 549-561.	1.7	89
102	Replication Timing of Human Chromosome 6. Cell Cycle, 2005, 4, 172-176.	2.6	66
103	Molecular pathogenesis of astrocytic tumours. Journal of Neuro-Oncology, 2004, 70, 137-160.	2.9	114
104	Short postoperative survival for glioblastoma patients with a dysfunctional Rb1 pathway in combination with no wild-type PTEN. Clinical Cancer Research, 2003, 9, 4151-8.	7.0	45
105	A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Human Molecular Genetics, 2002, 11, 3221-3229.	2.9	129
106	The Complexity of the 7p12 Amplicon in Human Astrocytic Gliomas: Detailed Mapping of 246 Tumors. Journal of Neuropathology and Experimental Neurology, 2000, 59, 1087-1093.	1.7	15
107	Severe phenotype of neurofibromatosis type 2 in a patient with a 7.4-MB constitutional deletion on chromosome 22: Possible localization of a neurofibromatosis type 2 modifier gene?. , 1999, 25, 184-190.		37
108	Mutational Profile of the PTEN Gene in Primary Human Astrocytic Tumors and Cultivated Xenografts. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1170-1183.	1.7	69

#	Article	IF	CITATIONS
109	Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy grades. , 1998, 22, 9-15.		115
110	Chromosome 7 Rearrangements in Glioblastomas; Loci Adjacent to EGFR Are Independently Amplified. Journal of Neuropathology and Experimental Neurology, 1998, 57, 1138-1145.	1.7	20
111	Frequent In activation of <i>CDKN2A</i> and Rare Mutation of <i>TP53</i> in PCNSL. Brain Pathology, 1998, 8, 263-276.	4.1	65
112	Molecular analyses of rosette-forming glioneuronal tumor of the midbrain tegmentum: A report of two cases and a review of the FGFR1 status in unusual tumor locations. , 0, 13, 213.		1
113	Response to entrectinib in a malignant glioneuronal tumor with <i>ARHGEF2</i> - <i>NTRK</i> fusion. Neuro-Oncology Advances, 0, , .	0.7	2