
Johann H Jungclaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4238862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconciling Conflicting Accounts of Local Radiative Feedbacks in Climate Models. Journal of Climate, 2022, 35, 3131-3146.	3.2	2
2	The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	16
3	Airâ€Sea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	7
4	What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?. Climate Dynamics, 2021, 56, 155-187.	3.8	29
5	Effect of Resolving Ocean Eddies on the Transient Response of Global Mean Surface Temperature to Abrupt 4xCO ₂ Forcing. Geophysical Research Letters, 2021, 48, e2020GL092049.	4.0	1
6	Comparison of ocean vertical mixing schemes in the Max Planck Institute Earth System Model (MPI-ESM1.2). Geoscientific Model Development, 2021, 14, 2317-2349.	3.6	11
7	High-resolution marine data and transient simulations support orbital forcing of ENSO amplitude since the mid-Holocene. Quaternary Science Reviews, 2021, 268, 107125.	3.0	20
8	Increasing the Depth of a Land Surface Model. Part I: Impacts on the Subsurface Thermal Regime and Energy Storage. Journal of Hydrometeorology, 2021, 22, 3211-3230.	1.9	10
9	Identifying and Characterizing Subsurface Tropical Instability Waves in the Atlantic Ocean in Simulations and Observations. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017013.	2.6	7
10	Increasing the Depth of a Land Surface Model. Part II: Temperature Sensitivity to Improved Subsurface Thermodynamics and Associated Permafrost Response. Journal of Hydrometeorology, 2021, 22, 3231-3254.	1.9	11
11	Agreement of analytical and simulationâ€based estimates of the required land depth in climate models. Geophysical Research Letters, 2021, 48, e2021GL094273.	4.0	2
12	Response of Northern North Atlantic and Atlantic Meridional Overturning Circulation to Reduced and Enhanced Wind Stress Forcing. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017902.	2.6	6
13	Disentangling Internal and External Contributions to Atlantic Multidecadal Variability Over the Past Millennium. Geophysical Research Letters, 2021, 48, e2021GL095990.	4.0	17
14	Ocean Model Formulation Influences Transient Climate Response. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017633.	2.6	8
15	Poleward Shift of Northern Subtropics in Winter: Time of Emergence of Zonal Versus Regional Signals. Geophysical Research Letters, 2020, 47, e2020GL089325.	4.0	9
16	Linking Ocean Forcing and Atmospheric Interactions to Atlantic Multidecadal Variability in MPIâ€ESM1.2. Geophysical Research Letters, 2020, 47, e2020GL087259.	4.0	14
17	Changes of Decadal SST Variations in the Subpolar North Atlantic under Strong CO2 Forcing as an Indicator for the Ocean Circulation's Contribution to Atlantic Multidecadal Variability. Journal of Climate, 2020, 33, 3213-3228.	3.2	11
18	Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 2020, 10, 667-671.	18.8	103

JOHANN H JUNGCLAUS

#	Article	IF	CITATIONS
19	Contrasting Southern Hemisphere Monsoon Response: MidHolocene Orbital Forcing versus Future Greenhouse Gas–Induced Global Warming. Journal of Climate, 2020, 33, 9595-9613.	3.2	20
20	Surface Flux Drivers for the Slowdown of the Atlantic Meridional Overturning Circulation in a Highâ€Resolution Global Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 1349-1363.	3.8	11
21	Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 2019, 12, 3241-3281.	3.6	201
22	Northern Hemisphere Monsoon Response to Midâ€Holocene Orbital Forcing and Greenhouse Gasâ€Induced Global Warming. Geophysical Research Letters, 2019, 46, 1591-1601.	4.0	56
23	Clarifying the Relative Role of Forcing Uncertainties and Initialâ€Condition Unknowns in Spreading the Climate Response to Volcanic Eruptions. Geophysical Research Letters, 2019, 46, 1602-1611.	4.0	32
24	Variability in the Northern North Atlantic and Arctic Oceans Across the Last Two Millennia: A Review. Paleoceanography and Paleoclimatology, 2019, 34, 1399-1436.	2.9	53
25	Developments in the MPlâ€M Earth System Model version 1.2 (MPlâ€ESM1.2) and Its Response to Increasing CO ₂ . Journal of Advances in Modeling Earth Systems, 2019, 11, 998-1038.	3.8	582
26	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	3.6	164
27	A Higherâ€resolution Version of the Max Planck Institute Earth System Model (MPIâ€ESM1.2â€HR). Journal of Advances in Modeling Earth Systems, 2018, 10, 1383-1413.	3.8	272
28	An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes. Climate Dynamics, 2017, 48, 727-744.	3.8	48
29	Winter amplification of the European Little Ice Age cooling by the subpolar gyre. Scientific Reports, 2017, 7, 9981.	3.3	38
30	The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 <i>past1000</i> simulations. Geoscientific Model Development, 2017, 10, 4005-4033.	3.6	155
31	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	3.6	223
32	The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO ₂ forcing. Geoscientific Model Development, 2016, 9, 3993-4017.	3.6	133
33	A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability. Geophysical Research Letters, 2016, 43, 784-792.	4.0	49
34	High atmospheric horizontal resolution eliminates the windâ€driven coastal warm bias in the southeastern tropical Atlantic. Geophysical Research Letters, 2016, 43, 10,455.	4.0	34
35	European summer temperatures since Roman times. Environmental Research Letters, 2016, 11, 024001.	5.2	260
36	Multi-model ensemble analysis of Pacific and Atlantic SST variability in unperturbed climate simulations. Climate Dynamics, 2016, 47, 1073-1090.	3.8	8

#	Article	IF	CITATIONS
37	Internally generated decadal cold events in the northern North Atlantic and their possible implications for the demise of the Norse settlements in Greenland. Geophysical Research Letters, 2015, 42, 908-915.	4.0	19
38	Using simulations of the last millennium to understand climate variability seen in palaeo-observations: similar variation of Iceland–Scotland overflow strength and Atlantic Multidecadal Oscillation. Climate of the Past, 2015, 11, 203-216.	3.4	10
39	Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. Climate of the Past, 2014, 10, 2201-2213.	3.4	71
40	The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation. Ocean Science, 2014, 10, 227-241.	3.4	24
41	Different flavors of the Atlantic Multidecadal Variability. Climate Dynamics, 2014, 42, 381-399.	3.8	35
42	Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Climate Dynamics, 2013, 40, 1301-1318.	3.8	80
43	Background conditions influence the decadal climate response to strong volcanic eruptions. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4090-4106.	3.3	86
44	Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPIâ€Earth system model. Journal of Advances in Modeling Earth Systems, 2013, 5, 422-446.	3.8	574
45	Climate and carbon cycle changes from 1850 to 2100 in MPIâ€ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 2013, 5, 572-597.	3.8	1,280
46	Arctic seaâ€ice evolution as modeled by Max Planck Institute for Meteorology's Earth system model. Journal of Advances in Modeling Earth Systems, 2013, 5, 173-194.	3.8	110
47	Two Tales of Initializing Decadal Climate Prediction Experiments with the ECHAM5/MPI-OM Model. Journal of Climate, 2012, 25, 8502-8523.	3.2	139
48	Tuning the climate of a global model. Journal of Advances in Modeling Earth Systems, 2012, 4, .	3.8	334
49	Forecast skill of multiâ€year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophysical Research Letters, 2012, 39, .	4.0	67
50	Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dynamics, 2012, 39, 419-444.	3.8	174
51	Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geoscientific Model Development, 2011, 4, 33-45.	3.6	349
52	Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM. Climate of the Past, 2009, 5, 785-802.	3.4	95
53	Initializing Decadal Climate Predictions with the GECCO Oceanic Synthesis: Effects on the North Atlantic. Journal of Climate, 2009, 22, 3926-3938.	3.2	248
54	Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Climate Dynamics, 2008, 31, 731-741.	3.8	37

#	Article	IF	CITATIONS
55	Modelling the Overflows Across the Greenland–Scotland Ridge. , 2008, , 527-549.		15
56	Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate. Geophysical Research Letters, 2007, 34, .	4.0	53
57	A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2concentration. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	472
58	Arctic–North Atlantic Interactions and Multidecadal Variability of the Meridional Overturning Circulation. Journal of Climate, 2005, 18, 4013-4031.	3.2	230
59	Sea level changes mechanisms in the MPI-ESM under FAFMIP forcing conditions. Climate Dynamics, 0, , 1.	3.8	1