List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4238527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tapping on Pulseless Electrical Activity: An Opportunity for Improving Resuscitation Outcomes?. Journal of the American Heart Association, 2021, 10, e021798.	3.7	1
2	Targeted Delivery of Electrical Shocks and Epinephrine, Guided by Ventricular Fibrillation Amplitude Spectral Area, Reduces Electrical and Adrenergic Myocardial Burden, Improving Survival in Swine. Journal of the American Heart Association, 2021, 10, e023956.	3.7	5
3	Enhanced Oxygen Utilization Efficiency With Concomitant Activation of AMPK-TBC1D1 Signaling Nexus in Cyclophilin-D Conditional Knockout Mice. Frontiers in Physiology, 2021, 12, 756659.	2.8	1
4	Chest compression components (rate, depth, chest wall recoil and leaning): A scoping review. Resuscitation, 2020, 146, 188-202.	3.0	46
5	From a pressure-guided to a perfusion-centered resuscitation strategy in septic shock: Critical literature review and illustrative case. Journal of Critical Care, 2020, 56, 294-304.	2.2	12
6	Development of a work of breathing scale and monitoring need of intubation in COVID-19 pneumonia. Critical Care, 2020, 24, 477.	5.8	37
7	Septic shock patients with adequate tissue perfusion parameters still need the recommended minimal Mean Arterial Pressure: Not really. Journal of Critical Care, 2020, 56, 308-310.	2.2	0
8	From a toilet plunger to head-up CPR: Bundling systemic and regional venous return augmentation to improve the hemodynamic efficacy of chest compression. Resuscitation, 2020, 149, 225-227.	3.0	1
9	Constitutive cyclophilin-D ablation in mice increases exercise and cognitive-behavioral performance under normoxic and hypoxic conditions. Physiology and Behavior, 2020, 219, 112828.	2.1	1
10	2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation, 2019, 145, 95-150.	3.0	110
11	Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest. Resuscitation, 2019, 144, 166-177.	3.0	71
12	Improved exercise capacity in cyclophilinâ€D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake <i>via</i> AMPKâ€TBC1D1 signaling nexus. FASEB Journal, 2019, 33, 11443-11457.	0.5	7
13	Epinephrine in Out-of-Hospital Cardiac Arrest. New England Journal of Medicine, 2019, 380, 394-398.	27.0	3
14	Sodium-Hydrogen Exchanger Isoform-1 Inhibition: A Promising Pharmacological Intervention for Resuscitation from Cardiac Arrest. Molecules, 2019, 24, 1765.	3.8	21
15	A systematic review and meta-analysis of the effect of dispatcher-assisted CPR on outcomes from sudden cardiac arrest in adults and children. Resuscitation, 2019, 138, 82-105.	3.0	71
16	2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation, 2019, 140, e826-e880.	1.6	138
17	Severe Sepsis and Septic Shock Early Management Bundle Risks Aiding Vasopressor Misuse. Critical Care Medicine, 2019, 47, e717.	0.9	2
18	Abstract 257: Ventricular Fibrillation Amplitude Spectral Area to Assess the Myocardial Effect of Hemodynamic and Metabolic Interventions During Cardiac Resuscitation in a Rat Model. Circulation, 2019, 140, .	1.6	1

#	Article	IF	CITATIONS
19	Letter by Gazmuri and Karmazyn Regarding Article, "Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure― Circulation, 2018, 137, 1979-1980.	1.6	1
20	2017 American Heart Association Focused Update on Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 2018, 137, e7-e13.	1.6	111
21	Characterization of mitochondrial injury after cardiac arrest (COMICA). Resuscitation, 2017, 113, 56-62.	3.0	26
22	Circulatory collapse, right ventricular dilatation, and alveolar dead space: A triad for the rapid diagnosis of massive pulmonary embolism. American Journal of Emergency Medicine, 2017, 35, 936.e1-936.e4.	1.6	4
23	Realâ€Time Ventricular Fibrillation Amplitudeâ€Spectral Area Analysis to Guide Timing of Shock Delivery Improves Defibrillation Efficacy During Cardiopulmonary Resuscitation in Swine. Journal of the American Heart Association, 2017, 6, .	3.7	15
24	2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary. Circulation, 2017, 136, e424-e440.	1.6	104
25	2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary. Resuscitation, 2017, 121, 201-214.	3.0	88
26	Predictors of amplitude-spectral area (AMSA) during CPR in a swine model of electrically-induced ventricular fibrillation. Resuscitation, 2017, 118, e6-e7.	3.0	1
27	Early and sustained vasopressin infusion augments the hemodynamic efficacy of restrictive fluid resuscitation and improves survival in a liver laceration model of hemorrhagic shock. Journal of Trauma and Acute Care Surgery, 2017, 82, 317-327.	2.1	10
28	Plasma Cytochrome c Detection Using a Highly Sensitive Electrochemiluminescence Enzyme-Linked Immunosorbent Assay. Biomarker Insights, 2017, 12, 117727191774697.	2.5	10
29	opening of the mitochondrial permeability transition pore in a rat model of ventricular fibrillation and closed-chest resuscitation. American Journal of Translational Research (discontinued), 2017, 9, 3345-3359.	0.0	2
30	Adherence to Evidence-Base Endotracheal Intubation Practice Patterns by Intensivists and Emergency Department Physicians. Journal of Acute Medicine, 2017, 7, 47-53.	0.2	0
31	Cytochrome C in Patients with Septic Shock. Shock, 2016, 45, 512-517.	2.1	6
32	Adverse postresuscitation myocardial effects elicited by buffer-induced alkalemia ameliorated by NHE-1 inhibition in a rat model of ventricular fibrillation. Journal of Applied Physiology, 2016, 121, 1160-1168.	2.5	4
33	Ventricular Fibrillation Waveform Changes during Controlled Coronary Perfusion Using Extracorporeal Circulation in a Swine Model. PLoS ONE, 2016, 11, e0161166.	2.5	9
34	Ubiquinol (reduced Coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial. Critical Care, 2015, 19, 275.	5.8	25
35	Part 3: Adult basic life support and automated external defibrillation. Resuscitation, 2015, 95, e43-e69.	3.0	188
36	Cyclophilinâ€D: a resident regulator of mitochondrial gene expression. FASEB Journal, 2015, 29, 2734-2748.	0.5	19

#	Article	IF	CITATIONS
37	A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique. Journal of Visualized Experiments, 2015, , .	0.3	9
38	Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality. Circulation, 2015, 132, S414-35.	1.6	747
39	Part 3: Adult Basic Life Support and Automated External Defibrillation. Circulation, 2015, 132, S51-83.	1.6	230
40	Vasopressin Infusion with Small-Volume Fluid Resuscitation during Hemorrhagic Shock Promotes Hemodynamic Stability and Survival in Swine. PLoS ONE, 2015, 10, e0130134.	2.5	6
41	Estrogen fails to facilitate resuscitation from ventricular fibrillation in male rats. American Journal of Translational Research (discontinued), 2015, 7, 522-34.	0.0	5
42	Vitamin C Compromises Cardiac Resuscitability in a Rat Model of Ventricular Fibrillation. American Journal of Therapeutics, 2014, 21, 352-357.	0.9	13
43	Effects of Intraosseous Erythropoietin during Hemorrhagic Shock in Swine. PLoS ONE, 2014, 9, e110908.	2.5	4
44	Targeting Mitochondria During CPR. , 2014, , 129-142.		0
45	LUCAS 2TM device, compression depth, and the 2010 cardiopulmonary resuscitation guidelines. American Journal of Emergency Medicine, 2013, 31, 1154.e1-1154.e2.	1.6	9
46	High-dose erythropoietin during cardiac resuscitation lessens postresuscitation myocardial stunning in swine. Translational Research, 2013, 162, 110-121.	5.0	17
47	Erythropoietin facilitates resuscitation from ventricular fibrillation by signaling protection of mitochondrial bioenergetic function in rats. American Journal of Translational Research (discontinued), 2013, 5, 316-26.	0.0	15
48	Mechanical devices for chest compression. Critical Care Medicine, 2012, 40, 3095-3096.	0.9	1
49	Protecting Mitochondrial Bioenergetic Function During Resuscitation from Cardiac Arrest. Critical Care Clinics, 2012, 28, 245-270.	2.6	31
50	Clinically plausible hyperventilation does not exert adverse hemodynamic effects during CPR but markedly reduces end-tidal PCO2. Resuscitation, 2012, 83, 259-264.	3.0	59
51	AVE4454B—a novel sodium-hydrogen exchanger isoform-1 inhibitor—compared less effective than cariporide for resuscitation from cardiac arrest. Translational Research, 2011, 157, 71-80.	5.0	15
52	Cariporide given during resuscitation promotes return of electrically stable and mechanically competent cardiac activity. Resuscitation, 2010, 81, 106-110.	3.0	30
53	Reply to Letter to the Editor by Faybik, Peter MD, Lahner, Daniel MD, and Schramm, Wolfgang MD entitled "An outlasting error of Ernest Henry Starling for at least 83 years in the medical literature― Resuscitation, 2010, 81, 1584-1585.	3.0	5
54	Part 7: CPR Techniques and Devices. Circulation, 2010, 122, S720-8.	1.6	207

#	Article	IF	CITATIONS
55	Part 5: Adult Basic Life Support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation, 2010, 122, S298-S324.	1.6	145
56	Activation of caspase-3 may not contribute to postresuscitation myocardial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1164-H1174.	3.2	11
57	Erythropoietin facilitates the return of spontaneous circulation and survival in victims of out-of-hospital cardiac arrest. Resuscitation, 2009, 80, 631-637.	3.0	46
58	Cardiopulmonary resuscitation: From flying blind to flying right*. Critical Care Medicine, 2008, 36, 357-359.	0.9	2
59	Targeting mitochondria for resuscitation from cardiac arrest. Critical Care Medicine, 2008, 36, S440-S446.	0.9	62
60	In-vivo external sensor for mitochondrial injury: Circulating cytochrome c. , 2008, , .		1
61	CO2: Friend or foe?*. Critical Care Medicine, 2007, 35, 1788-1789.	0.9	0
62	Zoniporide preserves left ventricular compliance during ventricular fibrillation and minimizes postresuscitation myocardial dysfunction through benefits on energy metabolism*. Critical Care Medicine, 2007, 35, 2329-2336.	0.9	65
63	Myocardial Protection by Erythropoietin During Resuscitation from Ventricular Fibrillation. American Journal of Therapeutics, 2007, 14, 361-368.	0.9	29
64	Circulating levels of cytochromecafter resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H767-H775.	3.2	81
65	Scientific Knowledge Gaps and Clinical Research Priorities for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Identified During the 2005 International Consensus Conference on ECC and CPR Science With Treatment Recommendations. Circulation, 2007, 116, 2501-2512.	1.6	48
66	Limiting sarcolemmal Na+entry during resuscitation from ventricular fibrillation prevents excess mitochondrial Ca2+accumulation and attenuates myocardial injury. Journal of Applied Physiology, 2007, 103, 55-65.	2.5	42
67	Scientific knowledge gaps and clinical research priorities for cardiopulmonary resuscitation and emergency cardiovascular care identified during the 2005 International Consensus Conference on ECC and CPR Science with Treatment Recommendations. Resuscitation, 2007, 75, 400-411.	3.0	48
68	The Case for Sodium-Hydrogen Exchanger Isoform-1 Inhibition During Cardiac Resuscitation Remains Strong. Critical Care Medicine, 2006, 34, 1580-1582.	0.9	8
69	Cariporide minimizes adverse myocardial effects of epinephrine during resuscitation from ventricular fibrillation*. Critical Care Medicine, 2005, 33, 2599-2605.	0.9	58
70	B-type natriuretic peptide for predicting outcomes after open heart surgery: Superior to traditional scoring systems?*. Critical Care Medicine, 2005, 33, 459-460.	0.9	1
71	Inotropic options for postresuscitation myocardial dysfunction*. Critical Care Medicine, 2005, 33, 668-670.	0.9	5
72	Cariporide Potentiates the Effects of Epinephrine and Vasopressin by Nonvascular Mechanisms During Closed-Chest Resuscitation. Chest, 2005, 127, 1327-1334.	0.8	4

#	Article	IF	CITATIONS
73	Cariporide enables hemodynamically more effective chest compression by leftward shift of its flow-depth relationship. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2904-H2911.	3.2	42
74	Cariporide Potentiates the Effects of Epinephrine and Vasopressin by Nonvascular Mechanisms During Closed-Chest Resuscitation <xref rid="AFF1">[*]</xref> . Chest, 2005, 127, 1327.	0.8	25
75	CYTOCHROME C: A NOVEL BIOMARKER FOR PREDICTING SURVIVAL AFTER CARDIAC RESUSCITATION Critical Care Medicine, 2005, 33, A24.	0.9	0
76	POSSIBLE NEUROPROTECTIVE EFFECTS OF ZONIPORIDE DURING RESUSCITATION FROM CARDIAC ARREST. Critical Care Medicine, 2004, 32, A57.	0.9	2
77	ZONIPORIDE AMELIORATES POST-RESUSCITATION MYOCARDIAL DYSFUNCTION BY FLOW INDEPENDENT MECHANISMS. Critical Care Medicine, 2004, 32, A57.	0.9	0
78	Capnography during cardiac resuscitation: a clue on mechanisms and a guide to interventions. Critical Care, 2003, 7, 411.	5.8	16
79	Sodium-Hydrogen Exchange Inhibition During Ventricular Fibrillation. Circulation, 2003, 107, 1804-1809.	1.6	89
80	Hypothermia: Cooling down inflammation *. Critical Care Medicine, 2003, 31, 2811-2812.	0.9	8
81	Myocardial protection during resuscitation from cardiac arrest. Current Opinion in Critical Care, 2003, 9, 199-204.	3.2	10
82	Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation. Critical Care Medicine, 2003, 31, 2022-2028.	0.9	57
83	NHE-1 Inhibition: A Potential New Treatment for Resuscitation from Cardiac Arrest. , 2003, , 291-308.		1
84	Myocardial Effects of Sodium-Hydrogen Exchange Inhibition during Resuscitation from Ventricular Fibrillation. Progress in Experimental Cardiology, 2003, , 375-388.	0.0	1
85	Myocardial protection during ventricular fibrillation by inhibition of the sodium-hydrogen exchanger isoform-1. Critical Care Medicine, 2002, 30, S166-S171.	0.9	26
86	Blood transfusion and the risk of nosocomial infection: An underreported complication? *. Critical Care Medicine, 2002, 30, 2389-2391.	0.9	18
87	Myocardial protection during ventricular fibrillation by reduction of proton-driven sarcolemmal sodium influx. Translational Research, 2001, 137, 43-55.	2.3	40
88	Transtracheal Oxygenation. Chest, 2001, 120, 1663-1670.	0.8	8
89	Successful Ventricular Defibrillation by the Selective Sodium-Hydrogen Exchanger Isoform-1 Inhibitor Cariporide. Circulation, 2001, 104, 234-239.	1.6	77
90	Ventricular fibrillation waveform analysis for guiding the time of electrical defibrillation. Critical Care Medicine, 2001, 29, 2395-2397.	0.9	6

#	Article	IF	CITATIONS
91	A clinical decision aid was accurate for predicting survival to hospital discharge after in-hospital cardiac resuscitation. ACP Journal Club, 2001, 135, 117.	0.1	0
92	Effects of repetitive electrical shocks on postresuscitation myocardial function. Critical Care Medicine, 2000, 28, N228-N232.	0.9	30
93	Myocardial effects of repeated electrical defibrillations in the isolated fibrillating rat heart. Critical Care Medicine, 2000, 28, 2690-2696.	0.9	36
94	Pressors for cardiopulmonary resuscitation: Is there a new kid on the block?. Critical Care Medicine, 2000, 28, 1236-1238.	0.9	10
95	Myocardial effects of epinephrine during ventricular fibrillation: Does flow matter?. Critical Care Medicine, 2000, 28, 1678-1679.	0.9	0
96	Buffer treatment for cardiac resuscitation. Critical Care Medicine, 1999, 27, 875-876.	0.9	9
97	Myocardial effects of ventricular fibrillation in the isolated rat heart. Critical Care Medicine, 1999, 27, 1542-1550.	0.9	51
98	How do you spell basic life support?. Critical Care Medicine, 1999, 27, 2048-2050.	0.9	2
99	Acidosis during cardiac arrest: A manifestation of inadequate perfusion. Critical Care Medicine, 1999, 27, 2055-2056.	0.9	5
100	Outcome after cardiopulmonary resuscitation: Is age a factor?. Critical Care Medicine, 1999, 27, 2295-2296.	0.9	5
101	SARCOLEMMAL NA+-CA2+ EXCHANGER INHIBITION AMELIORATES POST-RESUSCITATION DIASTOLIC DYSFUNCTION. Critical Care Medicine, 1999, 27, A35.	0.9	2
102	SELECTIVE NHE-1 INHIBITION AMELIORATES ISCHEMIC CONTRACTURE IN THE ISOLATED FIBRILLATING RAT HEART. Critical Care Medicine, 1999, 27, 43A.	0.9	0
103	PRESERVATION OF LEFT VENTRICULAR FUNCTION DESPITE INTENSE HYPERCARBIC ACIDOSIS IN THE INTACT RAT. Critical Care Medicine, 1999, 27, 107A.	0.9	0
104	IMPROVED CARE DELIVERY UTILIZING AN INTENSIVIST-LED HOSPITALIST SYSTEM IN A VETERANS AFFAIRS HOSPITAL. Critical Care Medicine, 1999, 27, 155A.	0.9	0
105	Airway management during cardiopulmonary resuscitation. Critical Care Medicine, 1999, 27, 27-28.	0.9	1
106	OUTCOME AFTER IN-HOSPITAL CARDIAC ARREST: IS AGE A FACTOR?. Critical Care Medicine, 1999, 27, A65.	0.9	0
107	TRANSTRACHEAL OXYGENATION DURING CPR: AN EFFECTIVE ALTERNATIVE TO ENDOTRACHEAL INTUBATION. Critical Care Medicine, 1999, 27, A29.	0.9	1
100	Cardian Desugnitudian Chart 1007 111 712 722		

108 Cardiac Resuscitation. Chest, 1997, 111, 712-723.

0.8 28

#	Article	IF	CITATIONS
109	Cardiac Arrest in the Elderly. Chest, 1997, 112, 1147-1148.	0.8	0
110	Myocardial dysfunction after successful resuscitation from cardiac arrest. Critical Care Medicine, 1996, 24, 992-1000.	0.9	196
111	Effect of arrest time on the hemodynamic efficacy of precordial compression. Critical Care Medicine, 1995, 23, 1233-1236.	0.9	15
112	Epinephrine Increases the Severity of Postresuscitation Myocardial Dysfunction. Circulation, 1995, 92, 3089-3093.	1.6	378
113	Gastric intramural PCO2 as monitor of perfusion failure during hemorrhagic and anaphylactic shock. Journal of Applied Physiology, 1994, 76, 572-577.	2.5	111
114	Cardiopulmonary resuscitation by precordial compression but without mechanical ventilation American Journal of Respiratory and Critical Care Medicine, 1994, 150, 1709-1713.	5.6	95
115	Spontaneous gasping increases the ability to resuscitate during experimental cardiopulmonary resuscitation. Critical Care Medicine, 1994, 22, 879-883.	0.9	75
116	Augmented efficacy of external CPR by intermittent occlusion of the ascending aorta Circulation, 1993, 88, 1916-1921.	1.6	60
117	AMPLITUDE OF VENTRICULAR FIBRILLATION WAVEFORM AS A MONITOR OF EFFICACY OF CARDIOPULMONARY RESUSCITATION. Critical Care Medicine, 1993, 21, S197.	0.9	0
118	EPINEPHRINE REVERSES POST-RESUSCITATION MYOCARDIAL DYSFUNCTION. Critical Care Medicine, 1993, 21, S193.	0.9	1
119	MYOCARDIAL ENERGY METABOLISM AND POST-RESUSCITATION MYOCARDIAL DYSFUNCTION. Critical Care Medicine, 1993, 21, S193.	0.9	2
120	Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Critical Care Medicine, 1993, 21, 901-906.	0.9	112
121	PROXIMAL AORTIC BALLOON OCCLUSION WITH AORTIC INFUSION. Critical Care Medicine, 1993, 21, S249.	0.9	0
122	Progressive myocardial dysfunction after cardiac resuscitation. Critical Care Medicine, 1993, 21, 1046-1050.	0.9	141
123	Regional blood flow during closed-chest cardiac resuscitation in rats. Journal of Applied Physiology, 1993, 74, 147-152.	2.5	115
124	Extracorporeal Circulation as an Alternative to Open-Chest Cardiac Compression for Cardiac Resuscitation. Chest, 1992, 102, 1846-1852.	0.8	15
125	RETRO-AORTIC BLOOD INFUSION WITH EPINEPHRINE FOR CPR. Critical Care Medicine, 1992, 20, S27.	0.9	0

1

RaÃ⁰l J Gazmuri

#	Article	IF	CITATIONS
127	Interposed abdominal counterpulsation during cardiopulmonary resuscitation improved outcomes after in-hospital cardiac arrest. ACP Journal Club, 1992, 116, 65.	0.1	0
128	End-tidal carbon dioxide tension as a monitor of native blood flow during resuscitation by extracorporeal circulation. Journal of Thoracic and Cardiovascular Surgery, 1991, 101, 984-988.	0.8	23
129	Hypercarbic acidosis reduces cardiac resuscitability. Critical Care Medicine, 1991, 19, 1177-1182.	0.9	74
130	Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Critical Care Medicine, 1991, 19, 218-224.	0.9	99
131	Hypothermia after cardiac arrest. Critical Care Medicine, 1991, 19, 315.	0.9	5
132	The HA-1A Monoclonal Antibody for Gram-Negative Sepsis. New England Journal of Medicine, 1991, 325, 279-283.	27.0	21
133	Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation Circulation, 1991, 84, 2101-2107.	1.6	134
134	Simultaneous aortic, jugular bulb, and right atrial pressures during cardiopulmonary resuscitation in humans Circulation, 1990, 81, 1158-1159.	1.6	7
135	EFFECT OF DURATION OF CARDIAL ARREST ON CORONARY PERFUSION PELCOOLH AND ENDTIDAL CO2 AS FREDICTORAL OF RESUSCITABILITY. Critical Care Medicine, 1990, 18, S222.	0.9	2
136	HYPERCARBIA AFTER CARDIAC ARREST PRECLUDES RESUSCITABILITY. Critical Care Medicine, 1990, 18, S246.	0.9	3
137	EPINEPHRINE PRODUCES BOTH HYPOXEMIA AND HYPERCARBIA DURING CPR. Critical Care Medicine, 1990, 18, S276.	0.9	6
138	Immediate resuscitation. Critical Care Medicine, 1990, 18, 455.	0.9	0
139	Calcium-entry blockers during porcine cardiopulmonary resuscitation. Clinical Science, 1990, 78, 207-213.	4.3	3
140	Increases in coronary vein CO2 during cardiac resuscitation. Journal of Applied Physiology, 1990, 68, 1405-1408.	2.5	37
141	Buffer agents do not reverse intramyocardial acidosis during cardiac resuscitation Circulation, 1990, 81, 1660-1666.	1.6	145
142	The clinical rationale of cardiac resuscitation. Disease-a-Month, 1990, 36, 426-468.	1.1	7
143	Cardiac effects of carbon dioxide-consuming and carbon dioxide-generating buffers during cardiopulmonary resuscitation. Journal of the American College of Cardiology, 1990, 15, 482-490.	2.8	82
144	Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation Circulation, 1989, 80, 684-692.	1.6	124

#	Article	IF	CITATIONS
145	Arterial Pco2 as an indicator of systemic perfusion during cardiopulmonary resuscitation. Critical Care Medicine, 1989, 17, 237-240.	0.9	79
146	Myocardial potassium uptake during experimental cardiopulmonary resuscitation. Critical Care Medicine, 1989, 17, 895-899.	0.9	2
147	END TIDAL CARBON DIOXIDE (PETC02) FOR MONITORING BLOOD FLOW DURING CPR. Critical Care Medicine, 1988, 16, 388.	0.9	1
148	Incomplete global myocardial ischemia during cardiac arrest and resuscitation. Critical Care Medicine, 1988, 16, 997-1001.	0.9	16
149	Cardiopulmonary resuscitation in the rat. Journal of Applied Physiology, 1988, 65, 2641-2647.	2.5	130
150	Pharmacology of cardiac arrest and reperfusion. , 0, , 395-416.		0
151	Prevention and therapy of postresuscitation myocardial dysfunction. , 0, , 829-847.		0