
Ute Hamer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4236931/publications.pdf Version: 2024-02-01

LITE HAMED

#	Article	IF	CITATIONS
1	How relevant is recalcitrance for the stabilization of organic matter in soils?. Journal of Plant Nutrition and Soil Science, 2008, 171, 91-110.	1.9	586
2	Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?. Frontiers in Microbiology, 2016, 7, 214.	3.5	479
3	Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry, 2004, 35, 823-830.	1.8	475
4	Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biology and Biochemistry, 2005, 37, 445-454.	8.8	240
5	Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Current Opinion in Environmental Sustainability, 2012, 4, 529-538.	6.3	213
6	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	8.0	177
7	Priming effects in soils after combined and repeated substrate additions. Geoderma, 2005, 128, 38-51.	5.1	128
8	Priming effects of sugars, amino acids, organic acids and catechol on the mineralization of lignin and peat. Journal of Plant Nutrition and Soil Science, 2002, 165, 261-268.	1.9	112
9	Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions. Soil Biology and Biochemistry, 2015, 89, 226-237.	8.8	102
10	Afforestation or intense pasturing improve the ecological and economic value of abandoned tropical farmlands. Nature Communications, 2014, 5, 5612.	12.8	89
11	Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena, 2008, 75, 248-256.	5.0	87
12	Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 2014, 175, 375-393.	2.0	87
13	Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nature Communications, 2016, 7, 11877.	12.8	77
14	Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biology and Biochemistry, 2010, 42, 56-64.	8.8	75
15	Priming effects in soil size fractions of a podzol Bs horizon after addition of fructose and alanine. Journal of Plant Nutrition and Soil Science, 2007, 170, 551-559.	1.9	50
16	Land-use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry, 2012, 111, 151-167.	3.5	49
17	Urea fertilisation affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador. Applied Soil Ecology, 2009, 43, 226-233.	4.3	48
18	Effect of temperature, pH and total organic carbon variations on microbial turnover of 13C315N-glyphosate in agricultural soil. Science of the Total Environment, 2019, 658, 697-707.	8.0	42

Ute Hamer

#	Article	IF	CITATIONS
19	Impact of air-drying and rewetting on PLFA profiles of soil microbial communities. Journal of Plant Nutrition and Soil Science, 2007, 170, 259-264.	1.9	37
20	Extracellular enzyme activities in a tropical mountain rainforest region of southern Ecuador affected by low soil P status and land-use change. Applied Soil Ecology, 2014, 74, 1-11.	4.3	37
21	Accounting for multiple ecosystem services in a simulation of landâ€use decisions: Does it reduce tropical deforestation?. Global Change Biology, 2020, 26, 2403-2420.	9.5	37
22	Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands. Global Change Biology, 2018, 24, 2828-2840.	9.5	35
23	Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after conversion of forest to pasture. Biogeochemistry, 2013, 112, 495-510.	3.5	33
24	Contribution of the soil seed bank to the restoration of temperate grasslands by mechanical sward disturbance. Restoration Ecology, 2018, 26, S114.	2.9	32
25	Cutin and suberin biomarkers as tracers for the turnover of shoot and root derived organic matter along a chronosequence of Ecuadorian pasture soils. European Journal of Soil Science, 2012, 63, 808-819.	3.9	27
26	Above- and belowground linkages of a nitrogen and phosphorus co-limited tropical mountain pasture system – responses to nutrient enrichment. Plant and Soil, 2015, 391, 333-352.	3.7	27
27	Soil organic matter and microbial community structure in set-aside and intensively managed arable soils in NE-Saxony, Germany. Applied Soil Ecology, 2008, 40, 465-475.	4.3	25
28	Biodegradation of Hydrogels from Oxyethylated Lignins in Model Soils. ACS Sustainable Chemistry and Engineering, 2015, 3, 1955-1964.	6.7	25
29	Effects of mowing, grazing and fertilization on soil seed banks in temperate grasslands in Central Europe. Agriculture, Ecosystems and Environment, 2018, 256, 211-217.	5.3	25
30	Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH. Environmental Pollution, 2020, 259, 113767.	7.5	24
31	Rhizosphere soil microbial community structure and microbial activity in set-aside and intensively managed arable land. Plant and Soil, 2009, 316, 57-69.	3.7	22
32	In an Ecuadorian pasture soil the growth of Setaria sphacelata, but not of soil microorganisms, is co-limited by N and P. Applied Soil Ecology, 2012, 62, 103-114.	4.3	21
33	Recovery of ecosystem functions after experimental disturbance in 73 grasslands differing in landâ€use intensity, plant species richness and community composition. Journal of Ecology, 2019, 107, 2635-2649.	4.0	20
34	Drought boosts risk of nitrate leaching from grassland fertilisation. Science of the Total Environment, 2020, 726, 137877.	8.0	20
35	Restoration of plant diversity in permanent grassland by seeding: Assessing the limiting factors along landâ€use gradients. Journal of Applied Ecology, 2021, 58, 1681-1692.	4.0	19
36	Microbial community composition and glyphosate degraders of two soils under the influence of temperature, total organic carbon and pH. Environmental Pollution, 2022, 297, 118790.	7.5	16

Ute Hamer

#	Article	IF	CITATIONS
37	Microbial activity and community structure in degraded soils on the Loess Plateau of China. Journal of Plant Nutrition and Soil Science, 2009, 172, 118-126.	1.9	14
38	Land-use intensity shapes kinetics of extracellular enzymes in rhizosphere soil of agricultural grassland plant species. Plant and Soil, 2019, 437, 215-239.	3.7	14
39	Restoration of calcareous grasslands: The early successional stage promotes biodiversity. Ecological Engineering, 2020, 151, 105858.	3.6	13
40	And the winner is …. ! A test of simple predictors of plant species richness in agricultural grasslands. Ecological Indicators, 2018, 87, 296-301.	6.3	12
41	Forest Site Classification in the Southern Andean Region of Ecuador: A Case Study of Pine Plantations to Collect a Base of Soil Attributes. Forests, 2017, 8, 473.	2.1	10
42	Nutrient dynamics in an Andean forest region: a case study of exotic and native species plantations in southern Ecuador. New Forests, 2020, 51, 313-334.	1.7	8
43	Soil microbial biomass and enzyme kinetics for the assessment of temporal diversification in agroecosystems. Basic and Applied Ecology, 2021, 53, 143-153.	2.7	7
44	Enzyme kinetics inform about mechanistic changes in tea litter decomposition across gradients in land-use intensity in Central German grasslands. Science of the Total Environment, 2022, 836, 155748.	8.0	4
45	Nutrient Additions Affecting Matter Turnover in Forest and Pasture Ecosystems. Ecological Studies, 2013, , 297-313.	1.2	3
46	Future Provisioning Services: Repasturisation of Abandoned Pastures, Problems, and Pasture Management. Ecological Studies, 2013, , 355-370.	1.2	3