German M MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/423659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mars 2020 Mission Overview. Space Science Reviews, 2020, 216, 1.	8.1	239
2	Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018, 360, 1093-1096.	12.6	224
3	The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity. Space Science Reviews, 2017, 212, 295-338.	8.1	153
4	Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2019, 46, 71-79.	4.0	138
5	Water and Brines on Mars: Current Evidence and Implications for MSL. Space Science Reviews, 2013, 175, 29-51.	8.1	105
6	Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 2018, 103, 1011-1020.	1.9	96
7	Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2019, 124, 3000-3024.	3.6	71
8	Distribution and habitability of (meta)stable brines on present-day Mars. Nature Astronomy, 2020, 4, 756-761.	10.1	66
9	Experimental evidence for the formation of liquid saline water on Mars. Geophysical Research Letters, 2014, 41, 4456-4462.	4.0	62
10	Meteorological Predictions for Mars 2020 Perseverance Rover Landing Site at Jezero Crater. Space Science Reviews, 2020, 216, 1.	8.1	62
11	Large Dust Aerosol Sizes Seen During the 2018 Martian Global Dust Event by the Curiosity Rover. Geophysical Research Letters, 2019, 46, 9448-9456.	4.0	58
12	The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Science Reviews, 2021, 217, 48.	8.1	57
13	The dynamic atmospheric and aeolian environment of Jezero crater, Mars. Science Advances, 2022, 8, .	10.3	47
14	Surface energy budget and thermal inertia at Gale Crater: Calculations from groundâ€based measurements. Journal of Geophysical Research E: Planets, 2014, 119, 1822-1838.	3.6	46
15	MarsWRF Convective Vortex and Dust Devil Predictions for Gale Crater Over 3 Mars Years and Comparison With MSLâ€REMS Observations. Journal of Geophysical Research E: Planets, 2019, 124, 3442-3468.	3.6	41
16	Constraining the Potential Liquid Water Environment at Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2018, 123, 1156-1167.	3.6	40
17	Effects of the MY34/2018 Global Dust Storm as Measured by MSL REMS in Gale Crater. Journal of Geophysical Research E: Planets, 2019, 124, 1899-1912.	3.6	40
18	Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 2018, 307, 294-326.	2.5	39

German M MartÃnez

#	Article	IF	CITATIONS
19	Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover. Scientific Reports, 2018, 8, 17576.	3.3	36
20	A model to calculate solar radiation fluxes on the Martian surface. Journal of Space Weather and Space Climate, 2015, 5, A33.	3.3	34
21	Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements. Geophysical Research Letters, 2017, 44, 3502-3508.	4.0	34
22	Relative Humidity on Mars: New Results From the Phoenix TECP Sensor. Journal of Geophysical Research E: Planets, 2019, 124, 2780-2792.	3.6	32
23	Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site. Astrobiology, 2016, 16, 937-948.	3.0	31
24	The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations. Geophysical Research Letters, 2019, 46, 9430-9438.	4.0	31
25	Methane seasonal cycle at Gale Crater on Mars consistent with regolith adsorption and diffusion. Nature Geoscience, 2019, 12, 321-325.	12.9	24
26	Lander and rover histories of dust accumulation on and removal from solar arrays on Mars. Planetary and Space Science, 2021, 207, 105337.	1.7	23
27	Characterization of the Martian Surface Layer. Journals of the Atmospheric Sciences, 2009, 66, 187-198.	1.7	18
28	The Effect of Marsâ€Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Nearâ€Surface of Mars. Journal of Geophysical Research E: Planets, 2018, 123, 2076-2088.	3.6	18
29	Solid-solid hydration and dehydration of Mars-relevant chlorine salts: Implications for Gale Crater and RSL locations. Icarus, 2019, 321, 1-13.	2.5	18
30	Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover. Sensors, 2022, 22, 2907.	3.8	18
31	In Situ UV Measurements by MSL/REMS: Dust Deposition and Angular Response Corrections. Space Science Reviews, 2020, 216, 1.	8.1	17
32	Thermal calibration of the MEDA-TIRS radiometer onboard NASA's Perseverance rover. Acta Astronautica, 2021, 182, 144-159.	3.2	17
33	The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006804.	3.6	16
34	Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA's Mars 2020 mission. Measurement: Journal of the International Measurement Confederation, 2020, 164, 107968.	5.0	15
35	Experimental evidence for the formation of liquid saline water on Mars. Geophysical Research Letters, 2014, 41, 4456-4462.	4.0	15
36	Curiosity observations and column model integrations for a martian global dust event. Icarus, 2020, 337, 113515.	2.5	14

German M MartÃnez

#	Article	IF	CITATIONS
37	The TKE budget in the convective Martian planetary boundary layer. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 2194-2208.	2.7	7
38	Thermal Forcing of the Nocturnal Near Surface Environment by Martian Water Ice Clouds. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	3
39	Active ground patterns near Mars' equator in the Glen Torridon region of Gale Crater. Journal of Geophysical Research E: Planets, 0, , .	3.6	3
40	Complex Brines and Their Implications for Habitability. Life, 2021, 11, 847.	2.4	2
41	Strong seasonal and regional variations in the evaporation rate of liquid water on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006867.	3.6	2
42	Mars' emitted energy and seasonal energy imbalance. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121084119.	7.1	2
43	A Simple Instrument Suite for Characterizing Habitability and Weathering: The Modern Aqueous Habitat Reconnaissance Suite (MAHRS). Astrobiology, 2019, 19, 849-866.	3.0	1
44	PREDICTION OF MARS METEOROLOGICAL VARIABLES USING ARTIFICIAL NEURAL NETWORKS. Dyna New Technologies, 2022, 9, [15p.]-[15p.].	0.1	0